
z/OS

Object Access Method Application
Programmer’s Reference

SC35-0425-01

IBM

z/OS

Object Access Method Application
Programmer’s Reference

SC35-0425-01

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page 71.

Second Edition, March 2002

This edition applies to Version 1 Release 3 of z/OS™ (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC35-0425-00.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
RCF Processing, Department M86/050
5600 Cottle Road
San Jose, CA 95193-0001
United States of America

IBMLINK from US: STARPUBS at SJEVM5
IBMLINK from Canada: STARPUBS at TORIBM
IBM Mail Exchange: USIB3VVD at IBMMAIL
Internet: starpubs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

About This Book . vii
Major Divisions of this Book . vii
Required Product Knowledge. vii
Referenced Publications . viii
Accessing z/OS DFSMS Books on the Internet viii
Using LookAt to look up message explanations ix
Accessing Licensed Books on the Web ix
How to Send Your Comments . x
How to Read Syntax Diagrams x

Summary of Changes . xiii
Summary of Changes for SC35-0425-01 z/OS Version 1 Release 3 xiii

New Information . xiii
Changed Information. xiii
Moved Information . xiii

Chapter 1. Understanding the Object Access Method 1
Understanding OAM Components 2
Establishing a Storage Management Policy 2
Understanding the OAM Application Programming Interface 4

Choosing Data Types That Work Well with OAM 4
Retrieving a Partial Object . 4
Coordinating DB2, OAM, and Your Application 5
Coordinating Your Application with OAM’s Object Identification 5
Overriding Management Policy Defaults 6
Separating Objects . 6
Deleting Objects . 6

Chapter 2. Application Program Interface for OAM 7
Using the OSREQ Macro . 7

Here is What You Can Do with OSREQ 7
Choosing the Form . 8
Getting the Code Right . 8

Implementing the Functions. 9
ACCESS—Initializing the OSREQ Interface 9
CHANGE—Changing an Object’s Management Characteristics 11
DELETE—Deleting an Existing Object 14
QUERY—Obtaining Object Characteristics. 15
RETRIEVE—Retrieving an Existing Object. 17
STORE—Adding an Object 19
UNACCESS—Ending the OSREQ Interface 22

OSREQ Keyword Parameter Descriptions 23
Usage Considerations . 28
Usage Requirements. 29
Restrictions and Limitations . 30
Programming Notes . 30

Register Use. 31
Expiration Date Processing . 31
Messages and Codes . 32
CBRIBUFL Macro . 33
CBRIQEL Macro . 35

© Copyright IBM Corp. 1986, 2002 iii

||

Appendix A. Sample Program for Object Storage 41

Appendix B. Reason Codes 53

Appendix C. Performance Considerations and Object Data Reblocking 61
Performance Considerations . 61

Object Data Reblocking. 61
Object Storage . 61
Object Retrieval . 62

Appendix D. Using the CBRUXSAE Installation Exit 63
Register Contents on Entry to CBRUXSAE 63
Programming the CBRUXSAE Exit Correctly 64
Sample CBRUXSAE Installation Exit 64

Appendix E. Accessibility . 69
Using assistive technologies . 69
Keyboard navigation of the user interface 69

Notices . 71
Programming Interface Information 72
Trademarks . 72

Glossary . 73

Index . 77

iv z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Figures

1. Application Illustration . 5
2. IADDRESS Parameter Effects in Various Processing Environments 11
3. Valid Retention Periods for Expiration Date Processing 32
4. Fields Described by CBRIBUFL . 33
5. Data Buffer List Structure Diagram . 34
6. Fields Described by CBRIQEL . 36
7. Query Buffer List Structure Diagram . 38
8. Sample Program for an Object Storage Request Using the OSREQ Macro 42
9. Sample CBRUXSAE Installation Exit . 65

© Copyright IBM Corp. 1986, 2002 v

||

vi z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

About This Book

This book describes the programming interface provided by OAM. It is intended to
show application programmers how to use the application programming interface to
manipulate a special class of data called objects within the OAM system. Using this
interface, programmers can store and retrieve specific objects. They can also
request information concerning specific objects, change their attributes, and delete
them from storage.

Application programmers may also use the information in this book to write custom
interfaces that allow their installation’s programs to work effectively with OAM.

Major Divisions of this Book
This book contains the following major divisions:

v “Chapter 1. Understanding the Object Access Method” on page 1 provides an
overview of concepts relating to objects and the Object Access Method.

v “Chapter 2. Application Program Interface for OAM” on page 7 contains detailed
information about the OSREQ macro and how it is used by application programs.

v “Appendix A. Sample Program for Object Storage” on page 41 provides
assembler source code for a sample object storage request interface.

v “Appendix B. Reason Codes” on page 53 provides error descriptions and
recommended responses for OAM return codes and reason codes.

v “Appendix C. Performance Considerations and Object Data Reblocking” on
page 61 presents information about the effect of storage requirements, buffering,
and other factors on application performance. This information is provided to help
you with tuning. Tuning information should not be used as a programming
interface.

v “Appendix D. Using the CBRUXSAE Installation Exit” on page 63 details how this
exit is used to provide security checking for the OSREQ macro.

v “Glossary” on page 73 defines acronyms, abbreviations, and terms used in this
document.

v “Index” on page 77 provides the page references for information concerning
specific terms and concepts discussed in this book.

Required Product Knowledge
To use this book effectively, you should be familiar with:

v DATABASE 2™ (DB2)

v z/OS

v Customer Information Control System (CICS)—optional, depending on your
installation

v Information Management System (IMS)—optional, depending on your installation

v Syntax diagrams

© Copyright IBM Corp. 1986, 2002 vii

Referenced Publications
The following publications are referenced in this book, or are useful in
understanding and applying the presented material:

Publication Title Order Number

CICS Transaction Server for OS/390 Installation Guide GC34-5697

CICS Messages and Codes GC33-5716

CICS DB2 Guide SC34-5707

DB2 Administration Guide SC26-8957

DB2 Application Programming and SQL Guide SC26-8958

DB2 Command Reference SC26-8960

DB2 SQL Reference SC26-8966

DB2 Utility Guide and Reference SC26-8967

DB2 What’s New GC26-8971

DB2 Messages and Codes GC26-8979

DB2 Diagnosis Guide and Reference LY27-9659

HLASM General Information GC26-4943

HLASM Language Reference SC26-4940

HLASM Programmer’s Guide SC26-4941

IMS/ESA Application Programming: Database Manager SC26-8727

IMS/ESA Application Programming: Design Guide SC26-8728

IMS/ESA Application Programming: EXEC DLI Commands for CICS
and IMS

SC26-8726

z/OS DFSMSdfp Diagnosis Guide GY27-7617

z/OS DFSMSdfp Diagnosis Reference GY27-7618

z/OS DFSMSdfp Storage Administration Reference SC26-7402

z/OS DFSMS: Using the Interactive Storage Management Facility SC26-7411

z/OS DFSMS OAM Planning, Installation, and Storage Administration
Guide for Object Support

SC35-0426

z/OS DFSMS OAM Planning, Installation, and Storage Administration
Guide for Tape Libraries

SC35-0427

z/OS MVS Initialization and Tuning Guide SA22-7591

Accessing z/OS DFSMS Books on the Internet
In addition to making softcopy books available on CD-ROM, IBM provides access to
unlicensed z/OS softcopy books on the Internet. To find z/OS books on the Internet,
first go to the z/OS home page: http://www.ibm.com/servers/eserver/zseries/zos

From this Web site, you can link directly to the z/OS softcopy books by selecting
the Library icon. You can also link to IBM Direct to order hardcopy books.

viii z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link user ID and password.

About This Book ix

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library .

3. Click on zSeries .

4. Click on Software .

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other DFSMS
documentation, please do one of the following actions:

v Send your comments by e-mail to:

– IBMLink from US: starpubs@us.ibm.com

– IBMLink from Canada: STARPUBS at TORIBM

– IBM Mail Exchange: USIB3VVD at IBMMAIL

– Internet: starpubs@us.ibm.com

Be sure to include the name of the book, the part number of the book, version
and product name, and if applicable, the specific location of the text you are
commenting on (for example, a page number or a table number).

v Fill out one of the forms at the back of this book and return it by mail or by giving
it to an IBM representative. If the form has been removed, address your
comments to International Business Machines Corporation, Department 61C,
9000 South Rita Road, Tucson, AZ 85744-0002, U.S.A.

How to Read Syntax Diagrams
There is one basic rule for reading the syntax diagrams: Follow only one line at a
time from the beginning to the end and code everything you encounter on that line.

The following rules apply to the conventions used in the syntax diagrams for all the
OAM commands:

v Read the syntax diagrams from left to right and from top to bottom.

v Each syntax diagram begins with a double arrowhead (ÊÊ) and ends with
opposing arrows (ÊÍ).

x z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

v An arrow (─Ê) at the end of a line indicates that the syntax continues on the next
line. A continuation line begins with an arrow (Ê─).

v Commands, keywords, and macro invocations are shown in uppercase letters.

v Where you can choose from two or more keywords, the choices are stacked one
above the other. If one choice within the stack lies on the main path, a keyword
is required, and you must choose one. In the following example you must choose
either L, M, or E.

ÊÊ L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

ÊÍ

v If a stack is placed below the main path, a keyword is optional, and you can
choose one or none. In the following example, TOKEN, COLLECTN, and NAME are
optional keywords. You can choose any one of the three.

ÊÊ
TOKEN
COLLECTN
NAME

ÊÍ

v Where you can choose from two or more keywords and one of the keywords
appears above the main path, that keyword is the default. You may choose one
or the other of the keywords, but if none is entered, the default keyword is
automatically selected. In the following example you may choose either PRIMARY,
BACKUP, or BACKUP2. If none is chosen, PRIMARY is automatically selected.

ÊÊ
PRIMARY
BACKUP
BACKUP2

ÊÍ

v Words or names in italicized, lowercase letters represent information you supply.
The values of these variables may change depending on the items to which they
refer. For example, in the syntax diagram below, collection_name_area refers to
the name of a collection, while collection_name_area_pointer refers to the pointer
for the collection name.

ÊÊ
COLLECTN= collection_name_area

(collection_name_area_pointer)

ÊÍ

v You must provide all items enclosed in parentheses (). You must include the
parentheses. In the following example, you must supply the volume serial
number (message_area_pointer) and it must be enclosed in parentheses.

ÊÊ
MSGAREA= message_area

(message_area_pointer)

ÊÍ

About This Book xi

v The repeat symbol shown below indicates that you can specify keywords and
variables more than once. The repeat symbol appears above the keywords and
variables that can be repeated. For example, when a comma appears in the
repeat symbol, you must separate repeated keywords or variables with a comma.

In the following example, you may specify the library_name and one or more
system identification numbers (system_id) that are separated by commas. You
must enclose the name of the library and all of the system IDs in parentheses.

ÊÊ

»

(library_name)
,

, system_id

ÊÍ

You would code this as follows:
(library_name, system_id, system_id, system_id)

The variable library_name is the name of the library you are working with, and
system_id names three different instances of system identification numbers.

xii z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by vertical lines to the
left of the changes.

You may notice changes in the style and structure of some content in this book—for
example, headings that use uppercase for the first letter of initial words only or
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in the z/OS
DFSMS books.

Summary of Changes for SC35-0425-01 z/OS Version 1 Release 3
This book contains information previously presented in z/OS Version 1 Release 1
Object Access Method Application Programmer’s Reference (SC35-0425-00).

The following sections summarize the changes to that information.

New Information
This edition includes the following new information:
v The BACKUP2 optional keyword for the VIEW parameter of the OSREQ

RETRIEVE function will be modified for this new support. PRIMARY | BACKUP |
BACKUP2 can be used with the VIEW parameter to indicate whether the primary
copy of the object, the first backup copy of the object, or the second backup copy
of the object should be retrieved.

v A new retrieval order key (QELQB2OK) on the CBRIQEL macro allows the
RETRIEVE and QUERY functions to include information on a secondary backup
of an object, if it exists.

v Two new return codes have been added to support the second backup copy of
an object function.

Changed Information
The following information was changed in this edition:
v The section “Establishing a Storage Management Policy” on page 2 has been

rewritten for greater clarity and to provide more specific information on setting up
a storage management policy.

v The descriptions in “OSREQ Keyword Parameter Descriptions” on page 23 have
been broken into two lines each to make them easier to read.

v The section “How to Read Syntax Diagrams” on page x has been enhanced.
v “Appendix C. Performance Considerations and Object Data Reblocking” on

page 61 has been rewritten for greater clarity.

Moved Information
The following information was moved within this edition:
v The information on management policies in the section “Coordinating DB2, OAM,

and Your Application” on page 5 was moved to the section “Establishing a
Storage Management Policy” on page 2.

v The information on the data class ACS routine in the section “Coordinating DB2,
OAM, and Your Application” on page 5 was moved to the section “Establishing a
Storage Management Policy” on page 2.

© Copyright IBM Corp. 1986, 2002 xiii

v The information on how to read syntax diagrams in “Chapter 2. Application
Program Interface for OAM” on page 7 was moved to the section “How to Read
Syntax Diagrams” on page x.

xiv z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Chapter 1. Understanding the Object Access Method

The Object Access Method (OAM) is a component of DFSMSdfp, the base for the
z/OS product. OAM uses the concepts of system-managed storage, introduced by
z/OS, which provide functions for data and space management. z/OS offers the
following advantages to its users:

v Facilitates the management of storage growth

v Improves the use of storage space

v Reduces the effort of device conversion and coexistence

v Provides centralized control of external storage

v Exploits the capabilities of available hardware

OAM supports a class of data referred to as objects. An object is a named stream
of bytes. The content, format, and structure of that byte stream are unknown to
OAM. For example, an object can be a compressed scanned image or coded data.
Objects are different from data sets handled by existing access methods. The
characteristics that distinguish them from traditional data sets include:
Lack of record orientation

There is no concept of individual records within an object.
Broad range of size

An object may contain less than one kilobyte or many megabytes of data.
Volume

Objects are usually much smaller than data sets; however, they are more
numerous and consume vast amounts of external storage.

Varying access-time requirements
Reference patterns for objects change over time or cyclically, allowing less
critical objects to be placed on lower-cost, slower devices or media.

z/OS includes the definition of a storage hierarchy for objects and the parameters
for managing those objects. OAM uses the z/OS-supplied hierarchy definition and
management parameters to place user-accessible objects anywhere in the storage
hierarchy.

The location of an object in the hierarchy is unknown to the user. Device-dependent
information is not required of the user; for example, there are no JCL DD
statements and no considerations for device geometry, such as track size.

OAM provides an application programming interface known as the object storage
request (OSREQ) macro to store, retrieve, delete, query, and change information
about an object. OAM includes the functions necessary to manage the objects after
storing them.

OAM stores objects in collections. A collection is a group of objects that typically
have similar performance characteristics:

CHARACTERISTIC DESCRIPTION

Availability The degree to which a resource is ready when
needed.

Backup A copy of the information that is kept in case the
original is changed, lost or destroyed.

Retention The default lifetime of an object.

© Copyright IBM Corp. 1986, 2002 1

|
|
|
|

|

Class transition An event that can cause the assignment of a new
management class, storage class, or both.

A collection is used to catalog a large number of objects, which, if cataloged
separately, require an extremely large catalog. Every object must be assigned to a
collection. Object names within a collection must be unique; however, the same
object name can be used in multiple collections. A collection can belong to only one
storage group; however, a storage group can have many collections associated with
it.

Understanding OAM Components
The functions of OAM are carried out by its three components:

v The Object Storage and Retrieval Function (OSR) stores, retrieves, and
deletes objects. Applications operating in the CICS®, IMS™, TSO, and
MVS/ESA™ environments use this application programming interface to store,
retrieve, and delete objects, and to modify information about objects. Object
Storage and Retrieval stores the objects in the storage hierarchy and maintains
the information about these objects in DB2® databases.

v The Library Control System (LCS) writes and reads objects on tape volumes or
optical disk storage, and it manipulates the volumes on which the objects reside.
The LCS controls the hardware resources attached to the system.

v The OAM Storage Management Component (OSMC) determines where the
objects should be stored, manages object movement within the object storage
hierarchy, and manages expiration attributes based on the installation storage
management policy defined through z/OS.

Establishing a Storage Management Policy
Each installation defines a storage management policy that allows effective object
storage management without requiring user intervention. Through the use of
Interactive Storage Management Facility (ISMF), the storage administrator and
system programmer define an installation storage management policy in an Storage
Management Subsystem (SMS) configuration. OAM then manages object storage
according to the currently active policy.

OAM defines the management policy parameters in the SMS constructs of
management class, storage class, storage group, and data class. The constructs
include the following specifications:

v Object retention rates

v Media on which OAM stores object collections

v Legal requirements for object retention

v Retrieval response time

v Location of object collections in the storage hierarchy

v How long OAM should hold the object collection at that level in the hierarchy

v Whether you need one or two backup copies of an object

v Media type to which OAM should direct backup copies of objects

v Affiliation of libraries with relevant storage groups

Refer to z/OS DFSMS: Using the Interactive Storage Management Facility for
general information on using ISMF. Refer to z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support and z/OS DFSMS

2 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

OAM Planning, Installation, and Storage Administration Guide for Tape Libraries for
specifics of using ISMF within tape and optical storage environments to set up the
management policy parameters.

Objects in OAM reside in a storage hierarchy that can include direct access storage
devices (DASD), optical volumes, and tape volumes. Optical and tape volumes can
be library-resident or shelf-resident. The primary copies of objects can be stored to
DASD, optical volumes, or tape volumes; while backup copies of objects can only
be stored to optical or tape volumes. OAM manages the storage hierarchy at the
system level by using SMS management class, storage class, storage group, and
data class constructs. The constructs specify the management policy parameters
that define the performance, retention, and backup requirements. OAM associates
these parameters with every object that it stores. The storage administrator defines
the associations through automatic class selection (ACS) routines. The constructs
are as follows:

Management Class
Defines backup, retention, and class transition characteristics for objects. A
management class contains parameters that define the need for making
one or two backup copies of the object. They also determine the default
lifetime of an object, and an event that can cause the assignment of a new
management class, storage class, or both. OAM uses these parameters to
create one or two backup copies of an object, to delete an object
automatically, and to invoke an automatic class selection (ACS) routine
when the specified transition event occurs. An ACS routine defines the
management policy for a collection based on a combination of these
constructs.

Storage Class
Defines the level of service for an object, which is independent of the
physical device or medium that contains the object. A storage class
contains parameters that define performance characteristics and availability
requirements for an object. OAM uses these parameters to determine
where to place objects in the storage hierarchy (DASD, optical, or tape).

Storage Group
Allows the user to define a storage hierarchy and to manage that hierarchy
as if it were one large storage area. You may assign a first and a second
Object Backup storage group to a specific Object storage group, or to all
Object storage groups, by including SETOSMC statements in the
CBROAMxx member of PARMLIB. For more information on multiple object
backup specification and the SETOSMC command, refer to z/OS DFSMS
OAM Planning, Installation, and Storage Administration Guide for Object
Support.

Data Class
Defines tape-related information for scratch tape volumes that are allocated
for OAM objects. The information defined by the data class includes the
retention period, tape expiration date, tape compaction, recording
technology, and media type.

Note: You must update the data class’s ACS routine to ensure that OAM
does not assign a DATACLASS parameter to the OAM object-to-tape
data sets. These data sets are named OAM.PRIMARY.DATA,
OAM.BACKUP.DATA, or OAM.BACKUP2.DATA. You may associate
a DATACLASS with a scratch tape volume through the SETOAM
command of the CBROAMxx PARMLIB member when the scratch
tape volume is allocated. Allowing the data class’s ACS routine to

Chapter 1. Understanding the Object Access Method 3

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

override or change the DATACLASS value provided by the SETOAM
command can cause unexpected results. This may interfere with the
storage management expectations for the installation. For more
information on object-to-tape support and the SETOAM command,
refer to z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Object Support. You should consider how
your application affects the administration of the objects it stores.

To control the management of an object, assign it to a collection whose
management policy is the same as that required by the new object. There is no
explicit way to tell OAM where to store a particular object.

For more information on z/OS constructs, refer to the z/OS DFSMSdfp Storage
Administration Reference manual.

Understanding the OAM Application Programming Interface
Typically, you want to do more with your files than store, retrieve, and delete them.
You might write application programs to do things like update databases, pass data
between workstations, communicate with peripheral devices, and other similar
functions. See Figure 1 on page 5 for an example of the devices that may be used.
OAM is designed to work with your application programs in the following
environments:
v CICS
v IMS
v TSO
v MVS™ batch

For your applications to work well with OAM, you must consider OAM data types,
partial object retrieval, DB2, OAM’s object identification, management policy
defaults, separating objects, and deletion of objects.

“Appendix A. Sample Program for Object Storage” on page 41 contains a sample
program that uses the OSREQ macro for object storage and manipulation.

Choosing Data Types That Work Well with OAM
OAM is designed to work primarily with object data, although it is not restricted to
that type of data. If your data is of the nontraditional type, is composed of many
dissimilar records, is subject to infrequent updates, and is expected to be stored for
long periods of time, then OAM is a good choice. On the other hand, if your data is
of the traditional data set type, is composed of many similar records, and is subject
to frequent updates, perhaps a different access method such as the ICF catalog or
another currently supported access method is a better choice.

Retrieving a Partial Object
Although OAM does not support a record interface, if you need to store an object
as a single entity and that object contains more than one logical entity, use the
OAM partial object retrieve function to obtain those logical entities. For example, a
drawing is composed of many subassemblies. Storing the subassemblies separately
would take too much DASD space for OAM directory information, so they are stored
as one object. The object is stored with control information (including subassembly
identifiers, byte offsets, and lengths) that indicates where a subassembly is located
within the object. Partial object retrieval allows you to read that control information
and to use it to formulate an OAM request to retrieve a specific subassembly from
within the object.

4 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

Coordinating DB2, OAM, and Your Application
OAM uses DB2 databases to contain descriptive information about every object that
is stored. OAM does not commit the descriptive information written to that DB2
database; the application using OAM must perform that function. This allows the
transaction to correlate and synchronize OAM’s activity with other activity in the
application (for example, synchronization of an application’s and OAM’s permanent
database changes, or alternatively, synchronization of backing out of those
changes).

Another example is an application transaction to perform an object update,
something OAM does not support. That is, an object can be retrieved using OAM,
updated by the application, original version deleted by OAM, new version stored by
OAM with the original name, then committed as a permanent change by the
application when it is satisfied with the results. If the application is not satisfied with
the results, it has the option of preserving the original object by backing out all of
the changes made by OAM up to that point.

Coordinating Your Application with OAM’s Object Identification
OAM uses two-level naming: an object name and a collection name. Once you
define a collection, give it a name, and establish its management policy, you can
add objects to the collection by using the collection name as part of the object
name, thus assigning the management policy to the new object.

The names you choose for collections and objects are important because normally
objects associated with a particular collection are managed by the management
policies for that collection. If you choose to store an object into a collection that has
been previously established, the object will be managed according to the
collection’s management policies unless you specifically override those policies for

OAM Application
Program Interface

Application

DASD/DB2

Workstation

R
9A

1O
L0

2

Optical Storage
Device

Tape Storage
Device

Shelf-Resident
Optical Disks/
Tape Cartridges

Figure 1. Application Illustration

Chapter 1. Understanding the Object Access Method 5

the object. Likewise, if you choose an object name that assigns the new object to a
previously defined collection, the new object is managed according to the previously
defined collection’s management policy. Before coding an application, you should
consult your installation’s storage administrator for a naming convention for your
application.

Overriding Management Policy Defaults
You will probably be storing several types of data that have different performance
objectives and different management criteria. Some of your stored objects may
need faster access time than others, and some may need backup copies, but
others may not. Place objects that have differing characteristics in different
collections. If the number of objects that differ is small, instead of creating a new
collection, consider overriding the defaults by using explicit class names on the
interface to OAM. Refer to “Processing a STORE to an Existing Collection” on
page 22.

Separating Objects
OAM records descriptive information about each object that is stored. If your
application stores a large number of objects, the amount of descriptive information
can become excessive, causing performance degradation. OAM does not separate
any descriptive information for objects in the same collection. It may separate
descriptive information for objects in different collections, making it possible to
improve performance by reducing the size of the accumulated descriptive
information.

If you decide to separate one set of objects from another set, place them in
different collections within the storage group. To ensure that collections remain
separate, assign them to separate storage groups. System variables, including ACS
routines, determine physical separation of objects. The number of objects your
application stores may lead to your decision to separate objects by collections.

Deleting Objects
Your application design need not include explicit deletion of objects. The
management class associated with an object can specify that the object is to be
deleted after some time has elapsed. If your application keeps information about
objects (for example, their names) in a repository, you should consider
synchronizing the maintenance of that information with the automatic deletion of
objects. For more information on the Auto Delete installation exit for deleting
objects, refer to the z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Object Support.

6 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|
|

Chapter 2. Application Program Interface for OAM

The Object Access Method provides the object storage request macro (OSREQ) as
an application program interface for storing and retrieving objects. Object storage
requests can also return information (attributes) about specific objects, change
attributes of specific objects, and delete objects from storage.

Using the OSREQ Macro
The OSREQ macro is the application program interface to OAM and is located in
the SYS1.MACLIB macro library. Assembler H Version 2 is required to assemble
this macro. For a list of books that contain more information about Assembler H,
see “About This Book” on page vii.

See “Appendix C. Performance Considerations and Object Data Reblocking” on
page 61 for performance considerations to take into account when writing your
application program that interfaces with the OSREQ macro.

See “Appendix D. Using the CBRUXSAE Installation Exit” on page 63 for
information on and a sample of the CBRUXSAE security authorization installation
exit that is used at the OSREQ macro level.

Here is What You Can Do with OSREQ
The OSREQ macro permits the caller to request the following OAM functions:

FUNCTION DESCRIPTION

Access Establishes resources common to a set of OAM requests. Returns
a token that must be specified with all other requests associated
with this set.

Change Changes an object’s directory entry reference to management
class, storage class, and/or the expiration date, subject to the
approval of the ACS routines.

Delete Removes an object’s directory information and frees all reusable
resources allocated to the object.

Query Interrogates the object directory and returns information describing
objects within the storage system. Specific and generic (wild card)
queries are permitted.

Retrieve Locates the requested object and returns the entire object or the
specified portion of it in the virtual storage buffer provided by the
caller.

Store Records an object’s management criteria, object storage location,
and other information in an object directory. Places the new object
into the object storage hierarchy at a specific hierarchy level based
on the storage class.

Unaccess Frees the resources obtained with an OSREQ ACCESS request.
The token cannot be used after the UNACCESS invocation.

“Implementing the Functions” on page 9 contains detailed descriptions of the
functions and their corresponding syntax diagrams.

© Copyright IBM Corp. 1986, 2002 7

|
|
|

|
|
|

|
|

Choosing the Form
OSREQ is available in three forms, summarized in the following list:

MACRO FORM DESCRIPTION

List (MF=L) Generates a parameter list that can be used with
the other forms of the macro.

Modify (MF=M) Updates the parameter list with new parameters
(specified when the modify form is invoked).

Execute (MF=E) Initiates execution of the actual object request; also
updates the parameter list if new parameters are
specified when the execute form is invoked.

Each form supports a variety of functions. These functions are described in “Here is
What You Can Do with OSREQ” on page 7. Subsequent sections present detailed
information about coding and invoking the macro to perform these functions. Use of
the OSREQ macro must take into consideration both the programming language
techniques and the environment in which the program executes. These issues are
discussed in “Usage Considerations” on page 28.

Getting the Code Right
The following list summarizes general guidelines for coding the OSREQ macro:

v The OSREQ macro uses only one positional parameter: function. This parameter
is always required.

v To invoke OAM functions, the OSREQ macro execute form is always necessary.
It must be coded in one of the following ways:

MF=(E,parameter_list)
MF=(E,parameter_list,COMPLETE)

where parameter_list identifies a parameter list area generated using the list form
of the OSREQ macro. That area may have been modified previously by the
modify form of the OSREQ macro (MF=(M,parameter_list)).

Note: Use either the actual generated list or a copy of it.

The execute form updates the parameter list area with any parameter values
supplied and calls OAM.

When you specify COMPLETE, the parameter list is zeroed, and nonzero
defaults are set before any supplied parameter values are applied.

v Some parameters must be supplied from one or more of the following sources:
List form
Modify form
Execute form

Parameters must be encoded at least once and must be provided for every
invocation of the macro; however, it may not be necessary to explicitly code each
parameter for each invocation within an application.

v The following keyword parameters are optional for all OSREQ macro functions,
but if specified, are used by all functions:

MSGAREA
RETCODE
REACODE

8 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

v The object name that is specified in the name keywords must be fully qualified.
Fully qualified names are described in the explanations of the COLLECTN and
NAME parameters. See “OSREQ Keyword Parameter Descriptions” on page 23
for descriptions of these and all other OSREQ function parameters.

Note: The name parameter does not have to be fully qualified when it is used
with the QUERY function. Generic names in which the lowest level
qualifier of the object name may end in an asterisk are also acceptable.

v Keyword parameters that are not specified in the syntax diagram for a function
may be included with that function. The keyword value pointers are established
or updated, but the keyword values that are not related to the function are
ignored.

Implementing the Functions
The following alphabetical listing includes the functions that you can perform with
the OSREQ macro and instructions for implementing them. A syntax diagram is
included with each function. For instructions on reading the syntax diagrams, see
“How to Read Syntax Diagrams” on page x. For an explanation of the keyword
parameters used in the syntax diagrams, see “OSREQ Keyword Parameter
Descriptions” on page 23.

v “ACCESS—Initializing the OSREQ Interface”

v “CHANGE—Changing an Object’s Management Characteristics” on page 11

v “DELETE—Deleting an Existing Object” on page 14

v “QUERY—Obtaining Object Characteristics” on page 15

v “RETRIEVE—Retrieving an Existing Object” on page 17

v “STORE—Adding an Object” on page 19

v “UNACCESS—Ending the OSREQ Interface” on page 22

ACCESS—Initializing the OSREQ Interface
The ACCESS function establishes a connection between the caller and OAM. The
caller supplies an eight-byte area identified by the TOKEN parameter. ACCESS
stores a token into this area. The token set by ACCESS must be specified on all
other OSREQ calls. A successful OSREQ ACCESS request must precede any other
type of OSREQ request. The syntax diagram for the OSREQ ACCESS function
follows.

Chapter 2. Application Program Interface for OAM 9

|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

Syntax for OSREQ ACCESS

ÊÊ OSREQ ACCESS MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
(2)

IADDRESS = SQL_interface_module_address
(SQL_interface_module_pointer)

Ê

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 This keyword must be specified on at least one of the forms if the MF=E does
not indicate COMPLETE.

2 This keyword indicates that a connection to DB2 already exists.

The OSREQ ACCESS function establishes the environmentally-dependent
resources needed for other OSREQ function processing in the address space. In
environments other than CICS or under the DSN command processor, the DB2 call
attachment facility (CAF) is used to establish a connection and open thread
between the application unit of work (task) and DB2. This allows for efficient
database processing and synchronization of database activities by the application.
An exception to this DB2 connection is when the IADDRESS parameter is specified,
which is further described below.

10 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

In the CICS and DSN command processor environments, the ACCESS function
assumes a connection and open thread to DB2 already exists, so CAF services are
not needed.

In environments where a connection and open thread to DB2 already exist, but the
ACCESS function cannot detect this condition (for example, IMS), the IADDRESS=
keyword must be used to specify the structured query language (SQL) interface
module entry point address. This address will be used for all SQL processing in the
other OSREQ functions. See Figure 2 for the effects of the IADDRESS parameter
when used in various processing environments.

To limit the scope of database activities synchronized by the application, each
application should issue its own ACCESS. The application must observe the DB2
restrictions regarding multiple threads from a single task as described in the DB2
Application Programming and SQL Guide.

When the calling program no longer requires OSREQ services, it issues the
OSREQ UNACCESS request. This clears the token contents. The token cannot be
used after OSREQ UNACCESS is issued.

CHANGE—Changing an Object’s Management Characteristics
The CHANGE function is used to alter the storage class, management class, or
retention period for previously stored objects. A new storage class name, a new
management class name, or a new retention period can be specified. Any
combination is valid. The specified change is made to the object directory table
immediately. The syntax diagram for the OSREQ CHANGE function follows.

PROCESSING
ENVIRONMENT

IADDRESS PARAMETER

SPECIFIED NOT SPECIFIED

IMS USED CAF ERROR

MVS BATCH USED* CAF SUCCESS

CICS IGNORED N/A

DSN Command Processor IGNORED N/A

TSO USED* CAF SUCCESS

Note: *If the DB2 CONNECT is not done by the application, a DB2 CONNECT and
COMMIT will be done for each SQL CALL.

Figure 2. IADDRESS Parameter Effects in Various Processing Environments

Chapter 2. Application Program Interface for OAM 11

Syntax for OSREQ CHANGE

ÊÊ OSREQ CHANGE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

Ê

Ê
(1)

NAME = object_name_area
(object_name_area_pointer)

Ê

Ê
STORCLAS= storage_class_area

(storage_class_area_pointer)

Ê

Ê
MGMTCLAS= management_class_area

(management_class_area_pointer)

Ê

Ê
RETPD= retention_period_word

(retention_period_word_pointer)

Ê

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

12 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 These keyword parameters must be specified on at least one of the forms if
the MF=E does not indicate COMPLETE.

As a result of an OSREQ CHANGE, the last referenced date and pending action
date of an object are updated to the current date. Because the pending action date
is updated, changed objects are scheduled for action during the next storage
management cycle. During that cycle, an object may be placed in a different level of
the object storage hierarchy to meet a new performance objective. Thus, a new
storage class assignment becomes effective during that storage management cycle.

If storage class is specified without management class, the ACS routines either
confirm or override the requested storage class assignment. The resulting storage
class assignment may be the previously assigned storage class, the requested
storage class, or another storage class as determined by the ACS routines. After
determining the storage class, the ACS routines determine whether a change in
management class is also needed.

If storage class and management class are both specified, first the ACS routines
either confirm or override the requested storage class assignment as above and
then process the management class. In a method similar to storage class
processing, the ACS routines either confirm or override the requested management
class assignment. The resulting management class assignment may be the
previously assigned management class, the requested management class, or
another management class determined by the ACS routines.

If management class is specified without storage class, the ACS routines either
confirm or override the requested management class assignment, resulting in
assignment of the previous management class, the requested management class,
or another management class. The storage class is not affected.

The new management class values obtained through ACS routine processing
become the basis for retention period processing.

If the RETPD parameter is specified, a new expiration date is calculated as follows:

v If the object’s management class retention limit is zero, the expiration date is not
changed unless RETPD was set to −1, in which case the expiration date is set to
the reserved value ‘0001-01-01’. The expiration date for the object is then based
solely on the object’s management class expiration attributes.

v If RETPD is specified but it is greater than the object’s management class
retention limit, the expiration date is set to the creation date of the object plus the
object’s management class retention limit.

v If a RETPD of X'7FFFFFFF' (2 147 483 647) is specified (requesting that the
object never expire) and the management class retention limit is NOLIMIT, the
expiration date is set to ‘9999-12-31’.

v If RETPD is specified, the RETPD value is in the range of 1 to 32 767, and none
of the above conditions applies, expiration date is set to the creation date of the
object plus the number of days specified in the RETPD.

Chapter 2. Application Program Interface for OAM 13

|
|
|
|
|
|

v If RETPD is not specified or is specified as 0 on the OSREQ invocation, then the
expiration date is not changed (see Figure 3 on page 32).

See “Expiration Date Processing” on page 31 for more information.

DELETE—Deleting an Existing Object
The DELETE function removes an object as identified by the COLLECTN and
NAME parameters from the object storage hierarchy. The directory information for
the object is deleted and all DASD storage used for the object data is released.
Primary object data stored on optical, tape, or DASD and backup copies of data
stored on optical or tape storage can no longer be referenced. The syntax diagram
for the OSREQ DELETE function follows. For further information on the OSMC
DASD space management process, refer to z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support.

Syntax for OSREQ DELETE

ÊÊ OSREQ DELETE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

Ê

Ê
(1)

NAME = object_name_area
(object_name_area_pointer)

Ê

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

14 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

QUERY—Obtaining Object Characteristics
The QUERY function obtains descriptive information about an object within a
collection. The object information is presented in query element (QEL) format. The
QEL format is described in section “CBRIQEL Macro” on page 35.

QUERY searches the directory containing the objects that belong to the collection
name specified in the COLLECTN keyword parameter for a match on the fully
qualified object name specified in the NAME keyword parameter, and returns a
single query element (QE). QUERY also supports a generic search that returns a
QE for each object whose name matches the partially qualified name specified in
the NAME keyword.

Request a generic search by substituting an asterisk (*) for the rightmost part of the
name (rightmost qualification level). This indicates that the search request applies to
all objects whose names match the characters to the left of the asterisk. For
instance, MIKES.MAIL.IN is a fully qualified name and results in a single QE when
a match is found. The names MIKES.MAIL.* and MIKES.MAIL.PEL* are generic
forms and can return multiple QEs when multiple objects exist that match the parts
of the names specified. When multiple objects are returned, no ordering can be
assumed.

The syntax diagram for the OSREQ QUERY function follows.

Chapter 2. Application Program Interface for OAM 15

Syntax for OSREQ QUERY

ÊÊ OSREQ QUERY MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

Ê

Ê
(1)

NAME = object_name_area
(object_name_area_pointer)

Ê

Ê
(2)

QEL = query_list
(query_list_pointer)

Ê

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

2 These keywords must be specified on at least one of the forms if the MF=E

16 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

does not indicate COMPLETE. For each buffer specified in query_list, the
length of the buffer must be specified. The variable query_list is described in
Figure 6 on page 36.

The output of a QUERY request can be used as input to a RETRIEVE request (see
“RETRIEVE—Retrieving an Existing Object”).

RETRIEVE—Retrieving an Existing Object
The RETRIEVE function locates the primary or backup copy of an object as
specified by the COLLECTN, NAME, and VIEW keywords, and returns all or a
specified portion of the object to the caller. The syntax diagram for the OSREQ
RETRIEVE function follows.

Syntax for OSREQ RETRIEVE

ÊÊ OSREQ RETRIEVE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

Ê

Ê
(1)

NAME = object_name_area
(object_name_area_pointer)

Ê

Ê
(2)

BUFLIST = buffer_list
(buffer_list_pointer)

PRIMARY
VIEW= BACKUP

BACKUP2

Ê

Ê
OFFSET= offset_of_starting_byte

(offset_of_starting_byte_pointer)

Ê

Ê
LENGTH= number_bytes_word

(number_bytes_word_pointer)

Ê

Chapter 2. Application Program Interface for OAM 17

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

2 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE. For each buffer specified in buffer_list, the
length of the buffer must be specified. The variable buffer_list is described in
Figure 4 on page 33.

If the VIEW=PRIMARY function is requested, the object is copied from its place in
the object storage hierarchy to the requester’s virtual storage buffers that are
specified in the BUFLIST keyword. When VIEW=BACKUP is specified, OAM
attempts to retrieve the first backup copy of the object from backup optical or tape.
When VIEW=BACKUP2 is specified, OAM attempts to retrieve the second backup
copy of the object from backup optical or tape. If the specified VIEW function is
requested but no object exists, return and reason codes reflect the error (see
“Appendix B. Reason Codes” on page 53) and no data is retrieved into the user’s
buffers.

You may retrieve a copy of the entire object (PRIMARY, BACKUP, or BACKUP2).
Alternatively, you may retrieve a specified portion of the object, as defined by the
OFFSET and LENGTH keywords. With adequate buffer space supplied by the
application, RETRIEVE returns the entire object (or requested portion). If any errors
occur during RETRIEVE processing, the buffer contents are invalid.

The RETRIEVE function can use the output from a successful OSREQ QUERY
request by using the collection name length field (QELQECNL) as the parameter for
the COLLECTN keyword, the object name length field (QELQEONL) as the
parameter for the NAME keyword, and by supplying an input buffer of the size
noted by object size (QELQEOS).

If you do not specify UPD=N on the CBRINIT statement in the IEFSSNxx member
of PARMLIB that is used during IPL, the last referenced date and pending action
date of a retrieved object are updated to the current date. This schedules the
retrieved objects for action during the next storage management cycle. During that

18 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

cycle, objects may be placed in a different level in the storage hierarchy to meet
new performance objectives, or the objects may not need any processing other than
resetting their pending action dates.

If OAM cannot successfully retrieve the object and one or more backup copies
exist, the application can use OSREQ RETRIEVE with VIEW=BACKUP or
VIEW=BACKUP2 to retrieve the appropriate backup copy. The storage administrator
may activate the automatic access backup function to obtain a backup copy of an
object when the primary copy of the object is resident on removable media that is
unreadable due to disaster or damage. See the z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support for more
information on automatic access backup.

Upon successful completion of object recovery, you can use OSREQ RETRIEVE to
retrieve the primary copy of the object.

STORE—Adding an Object
The STORE function adds a complete and unique object to the object storage
hierarchy. The application may specify a storage class name, management class
name, and retention period, and must specify a collection name and object name.
The syntax diagram for the OSREQ STORE function follows.

Objects are stored on an object storage device based on storage class. For more
information concerning the selection of media for object storage, refer to z/OS
DFSMS OAM Planning, Installation, and Storage Administration Guide for Object
Support.

The number of bytes specified in the SIZE parameter are written to an object
storage device from the buffers specified in the BUFLIST parameter. Objects are
removed from the object storage hierarchy based on management class expiration
attributes or after their expiration date.

When an object is stored, OAM sets the following date-related fields in the directory
entry:

v Set the date last referenced in the object directory to ‘0001-01-01’, which is a
reserved value that means that the object has not been referenced yet.

v Set the expiration date:

– If RETPD is not specified on the OSREQ request, the expiration date is set to
the reserved value ‘0001-01-01’. The expiration date for the object is then
based solely on the object’s management class expiration attributes.

– If the object’s management class retention limit is zero or if the retention
period is 0 or −1, the expiration date is set to the reserved value ‘0001-01-01’
(see Figure 3 on page 32 for more information).

– If RETPD is specified but it is greater than the object’s management class
retention limit, the expiration date is set to the creation date of the object plus
the object’s management class retention limit.

– If a RETPD of X'7FFFFFFF' (2 147 483 647) is specified (requesting that the
object never expire) and the management class retention limit is NOLIMIT, the
expiration date is set to ‘9999-12-31’.

– If RETPD is specified, the RETPD value is in the range of 1 to 32 767, and
none of the above conditions apply, expiration date is set to the creation date
of the object plus the number of days specified in the RETPD.

– Set the creation timestamp to the current date/timestamp.

Chapter 2. Application Program Interface for OAM 19

|
|
|

|
|
|
|
|
|
|
|

|
|

|

– Set the pending action date to the current date so that the object is selected
for processing during the next storage management cycle.

– Set the management class assignment date to the current date.

See “Expiration Date Processing” on page 31 for more information.

Syntax for OSREQ STORE

ÊÊ OSREQ STORE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

Ê

Ê
(1)

NAME = object_name_area
(object_name_area_pointer)

Ê

Ê
(2)

BUFLIST = buffer_list
(buffer_list_pointer)

Ê

Ê
(1)

SIZE = object_byte_word
(object_byte_word_pointer)

NO
RELBUF= YES

Ê

Ê
STORCLAS= storage_class_area

(storage_class_area_pointer)

Ê

Ê
MGMTCLAS= management_class_area

(management_class_area_pointer)

Ê

20 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|

|

Ê
RETPD= retention_period_word

(retention_period_word_pointer)

Ê

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

2 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE. For each buffer specified in buffer_list, the
length of the buffer must be specified. The buffer_list variable is described in
Figure 4 on page 33.

Processing a STORE to a New Collection
If the OSREQ STORE request specifies a new collection name, an MVS catalog
entry is created for the collection. The MVS catalog entry contains the names of the
management class and storage class to be used as default assignments for objects
added to the collection. The management class and storage class names are
determined by the ACS routines as follows:

v If storage class and management class names are not specified in the OSREQ
STORE request, the ACS routines determine the storage class and management
class names to be used as the default assignments for the collection.

v If storage class and management class are specified in the OSREQ STORE
request, the names are provided to the ACS routines, which either confirms or
overrides the assignments as the default storage class and management class
assignments for the collection.

v If storage class is specified without management class, the storage class name is
provided to the ACS routines, which either confirms or overrides the assignment,
and then determines the default management class assignment for the collection.

v If management class is specified without storage class, the ACS routines
determines the default storage class assignment. The management class name
is provided to the ACS routines, which either confirms or overrides the
management class assignment.

Chapter 2. Application Program Interface for OAM 21

Processing a STORE to an Existing Collection
If the STORE function is requested for an existing collection name or is requested
after the new collection name MVS catalog entry has been defined, the actual
storing of the object is completed. The initial storage class and management class
assignments are stored in the directory entry created for the object. The initial class
assignments are determined as follows:

v If the management class and storage class are not specified on the OSREQ
STORE request, the default assignments contained in the MVS catalog entry for
the collection are used as the assignments for the object.

v If management class and storage class are specified in the OSREQ STORE
request, the names are provided to the ACS routines, which either confirm or
override the assignments as the initial storage class and management class
assignments for the object.

v If storage class is specified without management class, the storage class name is
provided to the ACS routines, which either confirms or overrides the assignment,
and then determines the initial management class assignment for the object.

v If management class is specified without storage class, the ACS routines
determine the initial storage class assignment. The management class name is
provided to the ACS routines, which either confirms or overrides the management
class assignment.

UNACCESS—Ending the OSREQ Interface
The UNACCESS function ends the connection between the application program
and OAM. When the calling program no longer requires OSREQ services, it must
issue OSREQ UNACCESS. When invoking UNACCESS, the caller supplies an
eight-byte token that has been set by a successful issuance of OSREQ ACCESS.
UNACCESS should not be requested unless the corresponding ACCESS was
successful. An initialized token is required by all OSREQ calls, except ACCESS.
The syntax diagram for the OSREQ UNACCESS function follows.

22 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Syntax for OSREQ UNACCESS

ÊÊ OSREQ UNACCESS MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

Ê

Ê
(1)

TOKEN = token_area
(token_area_pointer)

Ê

Ê
MSGAREA= message_area

(message_area_pointer)

Ê

Ê
RETCODE= return_code_word

(return_code_word_pointer)

Ê

Ê
REACODE= reason_code_word

(reason_code_word_pointer)

Ê

Ê
TTOKEN= tracking_token

(tracking_token_pointer)

ÊÍ

Notes:

1 This keyword must be specified on at least one of the forms if the MF=E does
not indicate COMPLETE.

OSREQ UNACCESS does not attempt to end any active requests that are using
the same token, but returns control to the UNACCESS caller with a warning return
code and reason code. When each of the outstanding requests completes, any
further OSREQ requests using that token receive return and reason codes
indicating that the token is no longer valid.

OSREQ Keyword Parameter Descriptions
This section describes the OSREQ macro keyword parameters as they generally
pertain to all operations. The values in parentheses identify a register that contains
the address of the parameter (not applicable when using the OSREQ macro list
form). Restrictions and limitations may apply for some operations, and they are
explained separately under each operation. The keywords are listed alphabetically.

BUFLIST=buffer_list

BUFLIST= (buffer_list_pointer)

Chapter 2. Application Program Interface for OAM 23

buffer_list specifies the name of a variable or expression defining an area that has
the format described by the CBRIBUFL macro. See “CBRIBUFL Macro” on page 33.

COLLECTN=collection_name_area

COLLECTN= (collection_name_area_pointer)

collection_name_area specifies a variable-length field. This area contains a fully
qualified collection name. The first two bytes specify the number of characters that
follow; the maximum value is the maximum length of a standard MVS data set
name. A name consists of one to 21 parts. Each part is separated from the next
part by a period (X'4B'). Each part must start with an uppercase alphabetic, #, $, or
@ character. Each part can contain one to eight uppercase alphanumeric, #, $, or
@ characters. Each part of the name after the first period is often referred to as a
qualification level. Any disallowed character causes a parameter error return code
(except for blanks to the right of the name).

IADDRESS=SQL_interface_module_address

IADDRESS=(SQL_interface_module_address_pointer)

SQL_interface_module_address specifies the entry point of the address of the DB2
(or equivalent) SQL interface module (for example, the DFSLI000 and the DSNALI
interface modules). For details on the use of these modules, refer to the DB2
Administration Guide. This parameter must directly identify the entry point address
instead of acting as a pointer to a fullword that contains the entry point address.
The use of the IADDRESS keyword implies to the OSREQ interface that the
environment is not CICS nor DSN and that the DB2 connection and thread are
controlled by the application or by the environment in which the application is
running.

LENGTH=number_bytes_word

LENGTH=(number_bytes_word_pointer)

number_bytes_word specifies a fullword that indicates how many bytes of the object
are retrieved. It is used with the OFFSET keyword to retrieve part of an object. The
LENGTH keyword is an optional parameter, which is used only on a RETRIEVE
request. It is ignored on all other requests.

If a LENGTH value of zero is specified, or if the LENGTH parameter is omitted on a
RETRIEVE request, the length defaults to the remaining portion of the object (that
is, from the OFFSET to the end of the object). If the length specified is negative or
is greater than the remaining portion of the object, a return code and a reason code
indicating the error are returned; the object is not retrieved.

MF

The MF (macro form) keyword parameter uses several operands to indicate which
form of the macro is to be invoked. The forms and their associated operands are as
follows:

v MF=L

The list macro form generates a parameter list suitable for use with the MF
keyword on the execute and modify forms of the macro. The label position of the

24 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|

|
|
|
|

list form of the macro becomes the label of the generated parameter list. The
parameter list is a modifiable area of storage in the caller’s key, 96 bytes in
length.

v MF=(M,parameter_list[,COMPLETE])

The modify macro form updates parameter_list with the other parameters
specified on the macro statement.

v MF=(E,parameter_list[,COMPLETE])

The execute macro form updates parameter_list with the other parameters
specified on the macro statement and initiates execution of the request.

When you specify COMPLETE, the parameter list is zeroed, and nonzero defaults
are set before any supplied parameter values are applied. In this case, required
parameters that are not specified for the requested function on the MF=E form of
the macro are flagged as errors during assembly of the macro.

MGMTCLAS=management_class_area

MGMTCLAS= (management_class_area_pointer)

management_class_area specifies a variable-length field containing a two-byte
length field, followed by a variable-length name field containing a name identified to
z/OS as a management class name. The first two bytes specify the number of
characters that follow, not including the length field itself. The length-field value can
be from zero to the maximum length allowed for z/OS management class names.
The name must be left-justified in the name field and can be padded on the right
with blanks. If the length includes trailing blanks, only the name characters up to the
trailing blanks are used. Specifying a length value of zero or filling the name field
with blanks is equivalent to omitting this parameter.

MSGAREA=message_area

MSGAREA= (message_area_pointer)

message_area specifies an optional variable-length message area that contains a
length field followed by a message data area. This message data area is used for
message data that may accompany return codes from DB2. Message data is
placed in the message data area, and any message data that exceeds the available
space is truncated.

The first two bytes of the message area contain a length value equal to the length
of the message data area immediately following the first two bytes, but not including
the length field itself. The second two-byte field (first two bytes of the message data
area) contains the length of the message data returned, including the two bytes for
the second length field. A suggested initial message area length is 1024 bytes. The
minimum value for the message area length is 244 bytes.

Note: Not all errors have corresponding message data.

NAME=object_name_area

NAME=(object_name_area_pointer)

object_name_area specifies a variable-length field. This area contains a fully
qualified object name (except when used in conjunction with the OSREQ QUERY
function which allows the use of generic names). The first two bytes specify the

Chapter 2. Application Program Interface for OAM 25

number of characters that follow; the maximum value is the maximum length of a
standard MVS data set name. A name consists of 1 to 21 parts. Each part is
separated from the next part by a period (X'4B'). Each part must start with an
uppercase alphabetic, #, $, or @ character. Each part can contain one to eight
uppercase alphanumeric, #, $, or @ characters. Each part of the name after the
first period is often referred to as a qualification level. Any disallowed character
causes a parameter error return code (except for blanks to the right of the name).
For an OSREQ QUERY, one asterisk (X'5C') can be substituted for the rightmost
characters of the rightmost part of the name (rightmost qualification level) to
indicate that the search request applies to all objects whose names match the
characters to the left of the asterisk.

OFFSET=offset_of_starting_byte

OFFSET=(offset_of_starting_byte_pointer)

offset_of_starting_byte is a fullword that specifies the offset of the first byte to be
retrieved. The first byte of the object has an offset of zero, the second byte has an
offset of one, and so on. The OFFSET keyword is only used by a RETRIEVE
request and is ignored on all other requests.

If the OFFSET parameter is omitted on a RETRIEVE request, the offset defaults to
the beginning of the object (that is, OFFSET=0). If the offset specified is negative or
past the end of object, a return code and a reason code are returned, indicating the
error; the object is not retrieved.

QEL=query_list

QEL=(query_list_pointer)

query_list specifies the name of a variable or an expression defining an area that
has the format described by the CBRIQEL macro. See “CBRIQEL Macro” on
page 35.

REACODE=reason_code_word

REACODE=(reason_code_word_pointer)

reason_code_word specifies an optional area into which the reason code value is to
be copied. The reason code value is always in register 0. In order to determine the
success or failure of an OSREQ request, the programmer should check the reason
code in register 0.

Note: There are conditions under which the reason_code_word is not set, such as
the reason_code_word area is invalid or a major error occurs before the
reason_code_word area has been validated. The reason code value is
always returned to register 0.

RELBUF=YES

RELBUF=NO

The RELBUF keyword indicates the disposition of the data in the buffers that are
specified for a STORE operation. RELBUF=NO indicates that the data in the buffers
will be retained by the system. After the data is stored on the requested media,
RELBUF=YES indicates that the pages containing the data in the buffers may be

26 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|

discarded by the system and not restored when the respective pages are later
referenced. This use of RELBUF often improves performance by saving I/O
operations for paging data. RELBUF=NO is the default.

Attention: RELBUF=YES may release pages that contain data that has not been
committed to the database.

RETCODE=return_code_word

RETCODE=(return_code_word_pointer)

return_code_word is an area into which the return code value is copied. The return
code value is always in register 15. In order to determine the success or failure of
an OSREQ request, the programmer should check the return code in register 15.

Note: There are conditions under which the return_code_word is not set, such as
the return_code_word area is invalid or a major error occurs before the
return_code_word area has been validated. The return code value will
always be returned to register 15.

RETPD=retention_period_word

RETPD=(retention_period_word_pointer)

retention_period_word specifies a fullword or an expression that contains the
override retention period. See Figure 3 on page 32 for valid retention periods.

SIZE=object_byte_word

SIZE=(object_byte_word_pointer)

object_byte_word specifies a fullword that contains the total object length in bytes.
The maximum size is 50 megabytes (52 428 800 bytes).

STORCLAS=storage_class_area

STORCLAS= (storage_class_area_pointer)

storage_class_area specifies a variable-length field containing a two-byte length
field, followed by a variable-length name field containing a name identified to z/OS
as a storage class name. The first two bytes specify the number of characters that
follow, not including the length field itself. The length-field value can be from zero to
the maximum length allowed for z/OS storage class names. The name must be
left-justified in the name field and can be padded on the right with blanks. If the
length includes trailing blanks, only the name characters up to the trailing blanks
are used. Specifying a length value of zero or filling the name field with blanks is
equivalent to omitting this parameter.

TOKEN=token_area

TOKEN=(token_area_pointer)

token_area specifies an eight-byte area on a word boundary into which OSREQ
ACCESS stores a value. Token_area must be specified on all other issuances of
OSREQ. The token becomes invalid after OSREQ UNACCESS is issued.

Chapter 2. Application Program Interface for OAM 27

|

TTOKEN=tracking_token

TTOKEN=(tracking_token_pointer)

tracking_token specifies a 16-byte area containing a tracking token. The contents of
the tracking token may be any user-supplied information. The tracking token
supplied on the OSREQ macro with the TTOKEN keyword will be placed in the
OAM System Management Facility (SMF) record, in the ST1TTOK field for record
subtypes 1 through 7. If no tracking token is supplied on the OSREQ macro, the
ST1TTOK field in record subtypes 1 through 7 will contain binary zeros. For
information concerning SMF recording, refer to z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support.

VIEW=PRIMARY

VIEW=BACKUP

VIEW=BACKUP2

The VIEW parameter specifies which copy of an object is obtained during a
RETRIEVE. If VIEW=PRIMARY, OAM retrieves the primary copy of the object. If
VIEW=BACKUP, OAM retrieves the backup copy. If VIEW=BACKUP2, OAM
retrieves the second backup copy. If the specified copy of the object does not exist,
return and reason codes reflect this error (see “Appendix B. Reason Codes” on
page 53); no data is returned. The VIEW keyword is only applicable to RETRIEVE
requests and is ignored on all other requests. VIEW=PRIMARY is the default.

Usage Considerations
Use of the OSREQ macro must take into consideration both the programming
language techniques and the environment in which the program executes. The
following list summarizes those considerations:

v Any or all parameters can be supplied on any form of the OSREQ macro (MF=L,
MF=M, or MF=E). When you specify a parameter, a pointer to that parameter is
placed in the parameter list. This does not mean that the parameter pointer or
the parameter value is validity-checked for all requested functions. Only
parameters required by the specific function are checked for validity.

v Because parameters not relevant to the current function are ignored, parameters
specified on the MF=L form of the OSREQ macro can remain set for all following
OSREQ macro functions that use the same parameter list, unless the
COMPLETE operand is specified. In this way, parameter values can be altered
as needed, but parameter pointers do not need to be updated by subsequent
forms of the OSREQ macro. This can reduce some of the inline code created by
the macro.

v When you use the COMPLETE operand on the MF=M or MF=E forms of the
OSREQ macro, the entire parameter list is cleared and initialized; then, specified
parameter pointers are placed in the parameter list. The only way for the OSREQ
macro to verify that all required parameters are supplied is to use the
MF=(E,parameter_list,COMPLETE) form; however, additional inline code is
generated by using the COMPLETE operand.

v The TOKEN parameter of the OSREQ macro must be supplied by the MF=E
form or one of the previous invocations of the MF=L or MF=M forms. If the
TOKEN parameter is not specified or if an invalid token-area address is
specified, the MF=E form of the OSREQ macro specifying any function other

28 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|

|
|
|
|
|
|
|

than ACCESS produces unpredictable results (generally abnormal termination).
ACCESS identifies an invalid token area with appropriate return codes and
reason codes.

v The IADDRESS is an optional parameter that is valid only for an OSREQ
ACCESS function. The IADDRESS=keyword parameter is ignored for all other
OSREQ functions. If the application does not specify IADDRESS with an
ACCESS function, then OAM determines the execution environment. OAM uses
the appropriate DB2 language interface module consistent with the execution
environment when performing DB2 functions on behalf of the application.

v The OSREQ macro uses several literal values. It may be necessary to insert a
LTORG in the assembly code so that the created literals are addressable at the
point where the OSREQ macro is used.

v The user of the OSREQ macro must request the ACCESS function before any
other functions are requested. The user must request the UNACCESS function
when OAM processing is complete.

v When you are using the OSREQ macro in environments similar to CICS, where
all processing is done under one task control block (TCB), it is permissible for
one subroutine (or transaction) to request the ACCESS function and to pass a
pointer to the token to other subroutines (or transactions) that will need that
token for other functions. Passing a copy of the token itself from one subroutine
(or transaction) to another can produce unpredictable results.

Note: All processing must be done under the same TCB that issued the
ACCESS. The token cannot be used by more than one task.

v When the OSREQ macro is used in multitasking environments, each task must
request its own OSREQ ACCESS, and all functions within that task must use the
same token, not separate copies of the token.

Usage Requirements
The following requirements must be met in order to use the OSREQ macro
successfully:

v The caller must be in task mode, 31-bit addressing mode, primary addressing
mode, problem or supervisor state, and any storage protect key. (Callers may not
be in cross-memory mode.)

v The calling program cannot hold any MVS locks.

v All input and output parameters must be contained within the home address
space and must be accessible in primary addressing mode.

v The DB2 subsystem must be running and, if CICS is used, it must be connected
to DB2. The installation is responsible for starting the DB2 subsystem and
establishing the connection.

v The call attachment facility is used by OAM in the MVS batch environment to
connect to DB2 during the ACCESS call to OAM. After the connection is made to
DB2, a thread is established (via OPEN) to plan CBRIDBS. The call to ACCESS
should be invoked prior to any application DB2 activities occurring to allow
synchronization with the OAM database activities. Synchronization is the
responsibility of the application and is in the form of CLOSE, then OPEN, as
described in the DB2 CAF User’s Guide and Reference manual.

v In the CICS, DSN Command Processor, and IMS environments, it is assumed
that the connection to DB2 has already been made. Synchronization in CICS is
accomplished through the use of the SYNCPOINT function (refer to the DB2
Application Programming and SQL Guide). In the TSO environment,
synchronization is accomplished through the use of COMMIT and ROLLBACK

Chapter 2. Application Program Interface for OAM 29

functions, as described in the DB2 SQL Reference. In the IMS environment,
synchronization is accomplished through the use of COMMIT and ROLLBACK
functions (see the DB2 SQL Reference manual), or by the use of SYNC and
ROLL/B call to IMS.

v If you use JOBLIB or STEPLIB JCL statements in your application that include
DB2 load modules, then the entire JOBLIB or STEPLIB concatenation must be
assigned to authorized libraries. Because the OSREQ application programming
interface runs in an authorized state, it must load the DB2 modules at the time
the ACCESS function is invoked. MVS requires that all libraries in a
concatenation must be authorized when the loading program is authorized.

Restrictions and Limitations
OAM supports a maximum object size of 50 megabytes (52 428 800 bytes). The
minimum message area size is 244 bytes.

Programming Notes
The programming notes that follow may be relevant as you code your application
interface:

v Optional input parameters on the OSREQ macro may be omitted. OAM
processing identifies omitted optional input parameters as follows:

– If the optional input parameter has not been specified on any of the OSREQ
macro forms (MF=L, MF=M, or MF=E), the parameter pointer is zero.

– If the optional input parameter is specified on one of the OSREQ macro forms
but the value identified by the parameter is null, then the parameter has the
appropriate null value. The concept of null is different for different parameters.
A null RETPD parameter value is zero. A null STORCLAS parameter value is
indicated by either a length value of zero or the entire name containing
blanks.

– If the optional input parameters MGMTCLAS and STORCLAS are omitted,
these parameter values are supplied by the ACS routines, as described in
“OSREQ Keyword Parameter Descriptions” on page 23.

v If you do not specify a collection name on any function other than ACCESS or
UNACCESS, a return code and a reason code are generated, and the requested
function is not performed. The collection name is required if the function is to be
completed. If a specified collection name does not exist in the catalog for any
function other than STORE, ACCESS, or UNACCESS, a return code and a
reason code are generated.

v When an MVS catalog entry is created for a new collection on a STORE function
or the specified storage class or management class is overridden by the ACS
routines, a warning return code of 4 and a reason code with the fourth byte
indicating the processing status are generated. The conditions are possible in all
combinations. The processing status in the fourth byte of the reason code
contains individual bits that indicate the presence or absence of each of the
conditions.

v The caller must establish synchronization points for DB2 inserts, updates, and
deletes for the OSREQ functions STORE, DELETE, CHANGE, and RETRIEVE
as soon as possible (to minimize DB2 timeouts or deadlocks), depending on
return code.

v In order to allow your application to establish synchronization points in DB2, the
DBRM from your application program must be bound in the CBRIDBS plan. The
SAMPLIB job CBRIBIND (or CBRIBIND for DASD-only users) is used to create
the CBRIDBS plan in DB2. For more information on the CBRIBIND job and

30 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|
|
|

|
|

|
|
|

CBRIDBS plan, refer to the z/OS DFSMS OAM Planning, Installation, and
Storage Administration Guide for Object Support.

If your application uses the IADDRESS keyword, the application connection to
DB2 must be established and have an open thread. The plan identified for the
open thread can include any DBRMs or packages that are needed by the
application. However, it must also contain the DB2 packages created by the
CBRIBIND job for the CBRIDBS plan. For more information on the bind jobs or
on the DB2 plans, refer to z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Object Support.

v If the OSREQ macro is invoked and either the OSREQ parameter list or the
token area is in nonaddressable storage, a program check occurs within the
executable OSREQ macro code. For diagnostic purposes, the potential reason
code for the specific error is preloaded into register 0 before storage is accessed.
The register 0 contents in the abend summary should contain a reason code that
indicates the parameter or storage problem. This also applies if the token
contents have been corrupted before invoking the OSREQ macro.

v If the return code word or reason code word are not located in addressable
storage, the return and reason codes are only found in general registers 15 and
0, respectively, upon return from OSREQ.

Register Use
When the OSREQ macro is invoked, register 13 must contain the address of a
standard 18-word save area.

Registers 0, 1, 14, and 15 are used by the OSREQ macro. At exit, the contents of
the registers are as follows:

0 Reason code

1 Unpredictable

2–13 Unchanged

14 Unpredictable, except for ACCESS and UNACCESS, when it remains
unchanged

15 Return code

Expiration Date Processing
The expiration date is the date on which OAM can delete objects automatically. The
expiration date is based on the retention period (RETPD) specified on OSREQ
STORE or CHANGE or on the object’s management class retention limit. The
expiration date in the object’s directory entry is set to the reserved value of
‘0001-01-01’ when the object has no explicit expiration date. In this case, the
expiration of the object is based on the object’s management class expiration
attributes. The object’s management class referred to in this section is the actual
management class for the object after review and possible override by the
automatic class selection routine, which could be different from the management
class specified on the OSREQ macro.

Figure 3 on page 32 shows the processing of the values that may be specified on
the RETPD parameter and the resulting expiration date. RETPD values in the range
of 1 to 32 767 and the special value X'7FFFFFFF' (2 147 483 647) may be
overridden. If the RETPD parameter value exceeds the management class retention
limit, the management class retention limit is used to determine the expiration date.

Chapter 2. Application Program Interface for OAM 31

|
|
|
|
|
|
|

For the special parameter value X'7FFFFFFF' (2 147 483 647) to be effective, the
management class retention limit must be set to NOLIMIT.

Messages and Codes
OAM generates return codes and reason codes in response to errors detected
during the processing of OSREQ requests. While operating under control of the
calling transaction, OAM does not generate any messages to the operator, system
programmer, or storage administrator.

Return Codes and Reason Codes

OAM issues return codes 0, 4, 8, C, and 10 (hexadecimal). These return codes are
accompanied by reason codes that define the error encountered. See “Appendix B.
Reason Codes” on page 53 for a table of return codes and their associated reason
codes.

The return codes are defined as follows:

0 The requested function was successfully completed. Recommended
program action: None required.

4 The requested function was completed with a warning condition.
Recommended program action: Correct program, if necessary.

8 The requested function was not completed due to an application
programming error. Recommended program action: Write an error message
to the operator (system console, CICS, or IMS master terminal) that
includes the return code and reason code.

C The requested function was not completed due to an environmental error.
Recommended program action: Write an error message to the operator
(system console, CICS, or IMS master terminal) that includes the return
code and reason code.

Specified RETPD Parameter
Value

Requested Expiration Date
STORE

Requested Expiration Date
CHANGE

0 or retention period parameter not
specified (Null)

Set expiration date to 0001-01-01
and use management class
attributes to determine expiration
date.

Use existing expiration information
for this object.

−1 Set expiration date to 0001-01-01
and use management class
attributes to determine expiration
date.

Reset expiration date to
0001-01-01 and use management
class attributes to determine
expiration date.

1 to 32 767 Expiration date is set to the sum of
the object creation date and
RETPD parameter value.

Expiration date is set to the sum
of the object creation date and
RETPD parameter value.

X'7FFFFFFF' (2 147 483 647) 9999-12-31 9999-12-31

Any other value These values are invalid. Return
and reason codes are returned to
the caller.

These values are invalid. Return
and reason codes are returned to
the caller.

Figure 3. Valid Retention Periods for Expiration Date Processing

32 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

10 The requested function was not completed due to an OAM programming
error. Recommended program action: Write an error message to the
operator (system console, CICS, or IMS master terminal) that includes the
return code and reason code.

CBRIBUFL Macro
The CBRIBUFL macro describes the area to which the BUFLIST keyword on the
OSREQ macro points. The area contains a header and a list of buffer descriptors.
Each buffer descriptor describes one data buffer, giving the address of the buffer,
the length of the buffer, and the amount of data in the buffer. The data buffer
contains the data for the object to be stored or provides the buffer space for the
object to be retrieved.

The CBRIBUFL macro is a mapping macro consisting of three DSECTs. The first
two DSECTs are used to describe the buffer list. The third DSECT maps the data
buffer pointed to by the buffer list. Figure 4 and Figure 5 on page 34 describe the
contents of the DSECTs.

Figure 5 on page 34 is a structure diagram of the data buffer list (CBRIBUFL)
pointed to by the BUFLIST keyword on an OSREQ STORE or OSREQ RETRIEVE
macro.

OBL DSECT Data buffer list control block
DS 0F

+0 OBLID DS CL4 Control block identifier ('OBL ')
+4 OBLLSTL DS F Length of buffer list cb in bytes

including buffer descriptors
+8 OBLVERSN DS XL1 Buffer list version (X'02')
+9 DS XL3 Reserved, must be zero
+12 DS F Reserved, must be zero
+16 OBLNUMBF DS F Number of data buffer descriptors that

follow
+20 OBLBUFL DS 0F Beginning of data buffer descriptor list,

mapped by OBLBDESC

The following buffer descriptor is repeated for each data buffer:

OBLBDESC DSECT Data buffer descriptor
+0 OBLBUFP DS A Address of buffer
+4 OBLBBLTH DS F Length of buffer
+8 OBLBUSED DS F Length of data in buffer
+12 DS F Reserved, must be zero

Each data buffer is described as follows:

OBLB DSECT Data buffer
DS 0F

+0 OBLBDATA DS 0X Object data area

Figure 4. Fields Described by CBRIBUFL

Chapter 2. Application Program Interface for OAM 33

The caller uses the buffer descriptor for each buffer to provide buffer location, buffer
size, and data length to the system; it is then used by the system to return data
length information to the caller. The OBLBBLTH field indicates the buffer length. The
contents of this field must be set by the caller. The OBLBUSED field will indicate
the number of bytes used in the buffer. For a STORE request, the value in this field
is supplied by the caller; for a RETRIEVE request, this field is zeroed by OAM and
updated when information is loaded in the data area.

Part of an object may occupy space in an individual buffer; therefore, an object may
span several buffers. For a RETRIEVE request, the entire object (or requested
portion) is stored in the buffer space provided. If an error occurs during a
RETRIEVE request, the buffer data is invalid. Given adequate buffer space,
RETRIEVE will fill the first buffer with data, then the second, and so forth until the
total number of bytes filled in the buffers is equal to the size of the object (or the
requested portion of the object). For a STORE request, if the object data is in a
contiguous area of storage immediately following the last (or only) buffer descriptor,
the object data is stored directly from the data buffers; otherwise, object data is
reblocked from the data buffers into a temporary storage buffer and stored from the
temporary buffer.

+ 0 OBLBDATA Object Data Area

Data Buffer

Data

Buffer

Descriptor

Reserved

These Four

Fields are

Repeated

for Each

Data

Buffer

Version

Number

Control Block Identifier

Length of Data Buffer List

Reserved

Number of Data Buffer Descriptors

Address of Data Buffer

Length of Data Buffer

Length of Data in Buffer

Reserved

OBLID

OBLLSTL

OBLVERSN

OBLNUMBF

OBLBUFP

OBLBBLTH

OBLBUSED

+ 0

+ 4

+ 8

+ 1 2

+ 1 6

+ 0

+ 4

+ 8

+ 1 2

R
9

A
1

P
R

0
6

Figure 5. Data Buffer List Structure Diagram

34 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

CBRIQEL Macro
The CBRIQEL macro describes the area to which the QEL keyword on the OSREQ
macro points. The area contains a header and a list of buffer descriptors. Each
buffer descriptor points to and describes one query buffer. A query buffer contains
query elements. A query element describes the information retrieved by the OSREQ
QUERY function for an object. Each query buffer must be large enough to contain
at least one query element.

A series of query buffers can be specified in the buffer list so that information about
a large number of objects can be returned without requiring a large contiguous area
in virtual storage.

The CBRIQEL macro is a mapping macro that consists of four DSECTs. The QEL
DSECT describes the entire buffer list. The QELBDESC DSECT is used in
conjunction with the QEL DSECT to map one query buffer descriptor in the buffer
list.

The QELB DSECT describes a query buffer. The QELQ DSECT is used in
conjunction with the QELB DSECT to map one query element in the query buffer.
Figure 6 on page 36 and Figure 7 on page 38 describe the contents of the DSECTs.

The OSREQ QUERY command returns three order retrieval keys. The primary
retrieval order key field (QELQPROK), the backup retrieval order key field
(QELQBROK), and the secondary backup retrieval order key field (QELQB2OK) are
10-byte fields that allow OAM to retrieve a large number of objects within a limited
amount of time. It is important that OAM retrieve these objects in an order that
minimizes the mounting of the media. This utilizes process time efficiently when the
objects reside on removable media.

The OSREQ QUERY command returns, in addition to the primary retrieval order
key and the backup retrieval order key, a second backup retrieval order key. To
retrieve objects the most efficiently, you may use the QELQB2OK field on the
CBRIQEL mapping macro, which sorts objects prior to their retrieval. This retrieval
method uses less time to position and mount media and is therefore more efficient.
If no second backup copy of the object exists, this field contains binary zeroes.

These order retrieval keys are important when you use the output that is created by
the OSREQ QUERY request to retrieve a large number of objects. Use the primary
retrieval order key, the backup retrieval order key, or the secondary backup retrieval
order key for each object to sort the list of objects that is indicated on the OSREQ
QUERY request output for retrieval. Using these keys minimizes the number of
mount requests for each piece of removable media that contains the objects that
are being retrieved.

Chapter 2. Application Program Interface for OAM 35

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

QEL DSECT Query buffer list control block
DS 0F

+0 QELID DS CL4 Control block identifier ('QEL ')
+4 QELLSTL DS F Length of query buffer list in bytes

including buffer descriptors
+8 QELVERSN DS XL1 Query buffer list version
+9 QELRSVD1 DS XL3 Reserved, must be zero
+12 QELRSVD2 DS F Reserved, must be zero
+16 QELNUMBF DS F Number of query buffer descriptors
+20 QELBUFL DS 0F Beginning of query buffer descriptor

list, mapped by QELBDESC

The following query buffer descriptor is repeated for each query buffer:

QELBDESC DSECT Query buffer descriptor
+0 QELBUFP DS A Address of query buffer
+4 QELBBLTH DS F Length of query buffer
+8 QELBUSED DS F Number of bytes returned in query

buffer
+12 QELBRSV1 DS F Reserved, must be zero

Each query buffer is described as follows:

QELB DSECT Query buffer
DS 0F

+0 QELBDATA DS 0X Object data area

Each query element is described by the following:

QELQ DSECT Query element
+0 QELQELE DS H QE length including this field
+2 QELQECD DS CL10 Creation date (yyyy-mm-dd)
+12 QELQEDH DS CL1 Set to '-'
+13 QELQECT DS CL15 Creation time (hh.mm.ss.nnnnnn)
+28 QELQELD DS CL10 Last referenced date (yyyy-mm-dd)
+38 QELQEED DS CL10 Expiration date (yyyy-mm-dd)
+48 QELQESC DS XL2,CL8 Storage class length and name
+48 QELQESCL EQU QELQESC,2 Storage class length
+50 QELQESCN EQU QELEQSCL+2,8 Storage class name
+58 DS CL22 Reserved
+80 QELQEMC DS XL2,CL8 Management class length and name
+80 QELQEMCL EQU QELQEMC,2 Management class length
+82 QELQEMCN EQU QELQEMCL+2,8 Management class name
+90 DS CL22 Reserved
+112 QELQEOS DS F Object size
+116 QELQECN DS XL2,CL44 Collection name length and name
+116 QELQECNL EQU QELQECN,2 Collection name length
+118 QELQECNN EQU QELQECNL+2,44 Collection name
+162 QELQEON DS XL2,CL44 Object name length and name
+162 QELQEONL EQU QELQEON,2 Object name length
+164 QELQEONN EQU QELQEON+2,44 Object name
+208 QELQERRT DS F Estimated retrieval response time

(milliseconds). Value of -1 means
this information is not available.

+212 QELQPROK DS CL10 Primary retrieval order key
+222 QELQBROK DS CL10 Backup retrieval order key
+232 QELQB2OK DS CL10 Secondary backup retrieval order key

Figure 6. Fields Described by CBRIQEL

36 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|

The QELVERSN and QELQELE fields must be set by the user, as indicated below.
The QELQELE field should be adjusted to reflect the inclusion or exclusion of the
QELQPROK, QELQBROK, and QELQB2OK fields in the total length of the QUERY
element.

v If QELVERSN>=5, then the query buffer (QELQ) contains the QELQPROK,
QELQBROK, and QELQB2OK fields. These backup retrieval order key fields
contain binary zeroes if none of the backup copies exists.

v If QELVERSN=4, then the query buffer (QELQ) contains the QELQPROK and
QELQBROK fields. The backup retrieval order key fields contain binary zeroes if
none of the backup copies exists.

v If QELVERSN<4, then none of the fields (QELQPROK, QELQBROK, and
QELQB2OK) is included in the query buffer (QELQ).

The estimated retrieval response time field (QELQERRT) does not take current
system workload into consideration. The following values are returned to indicate
object location, thereby determining an estimated retrieval response time.

−1 Object location cannot be determined currently.

300 Object resides on DASD.

12 000 Object resides in an optical library.

60 000 Object resides on a tape volume inside an automated tape library.

120 000 Object resides on an optical volume on the shelf.

240 000 Object resides on a tape volume outside an automated tape library.

The estimated minimum retrieval response time field (QELQERRT) contains the
estimated time (in milliseconds) needed to retrieve the object. It is the total
estimated time, from the initiation of the RETRIEVE request until control is returned
to the caller with the object. This time is based on the physical device
characteristics of the hierarchy level on which the object is stored. It is an optimum
time and does not consider delays due to queue lengths, system load, or any other
dynamic situation. The time returned is a representative time to retrieve an object
from the device on which the object resides. The estimated time does not consider
the size or location of the specific object. If the retrieval response time cannot be
determined, QELQERRT is set to the reserved value of −1 (X'FFFFFFFF').

Figure 7 on page 38 is a structure diagram of the query buffer list (CBRIQEL)
pointed to by the QEL keyword on an OSREQ QUERY macro:

Chapter 2. Application Program Interface for OAM 37

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

||

||

||

||

||

||

|
|
|
|
|
|
|
|
|
|

The caller uses the buffer descriptor for each buffer to provide buffer location, buffer
size, and data length to the system; it is then used by the system to return data
length information to the caller. The QELBBLTH field indicates the length of the
query buffer. The content of this field must be set by the caller (the query buffer
must be at least long enough to hold one query element). The QELBUSED field
indicates the number of bytes used in the query buffer. This field is zeroed by OAM
and updated when information is stored in the query buffer.

Information about multiple objects (that is, multiple query elements) may occupy
space in one query buffer; however, no query element (QE) spans query buffers.
The first query buffer is filled until additional complete query elements no longer fit,
then the second buffer is filled, and so forth. The QELBUSED field indicates the
number of bytes used in each query buffer. Unused query buffers have the
QELBUSED field set to zero. The first zero QELBUSED field indicates the end of a
list of query elements. When the buffer space provided (QEL) is inadequate for the
number of query elements retrieved, a warning return code is provided to the caller,
and the number of query elements that fit in the available space is placed in the
query buffers.

The QE length field contains the size of the individual query element. The date
fields are in ISO format: yyyy-mm-dd. This format is different from the format of the
four-byte date stored in the object directory, which is a compressed form of this
information. An expiration date of “0001-01-01” indicates that no expiration date has
been specified, and therefore the management class is used to determine the
expiration date. If the object has not been retreived or changed, or if the UPD=N
parameter was specified on the CBRINIT statement of the IEFSSNxx member of
PARMLIB that was used during IPL, the last date referenced is “0001-01-01”. A last

+ 0 QELBDATA Query Element Data Area

Query Buffer

Query
Buffer

Descriptor

Reserved

These Four
Fields are
Repeated
for Each
Query
Buffer

Query Buffer
List Version

Control Block Identifier

Length of Query Buffer List

Reserved

Number of Query Buffer Descriptors

Address of Query Buffer

Length of Query Buffer

Number of Bytes Returned in Query Buffer

Reserved

+ 0

+ 4

QELID

QELLSTL

QELVERSN

QELNUMBF

QELBUFP

QELBBLTH

QELBUSED

+ 8

+ 1 2

+ 1 6

+ 0

+ 4

+ 8

+ 1 2

R
9A

1P
R

05

Figure 7. Query Buffer List Structure Diagram

38 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|

date referenced of “0001-01-01” indicates that the last referenced date and pending
action date are not to be updated when an object is retrieved.

The object name field contains the length of the name and the object name. When
the object name is less than 44 characters, it is left-justified in the field adjacent to
the length, which is the first byte of the field. The unused characters in this field are
blanks.

Chapter 2. Application Program Interface for OAM 39

|
|

40 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Appendix A. Sample Program for Object Storage

This appendix contains the source listing of a sample program that uses the
OSREQ macro for object manipulation. See Figure 8 on page 42 for the sample
program. This program is available as member CBROSREQ in SAMPLIB.

You can use member CBROSREQ in a number of ways depending on your
application:

v You can generate the IADDRESS parameter in the OSREQ ACCESS function by
specifying IADD as the SYSPARM value in the PARM field of the EXEC JCL
statement. For example:
//ASSEMBLE EXEC PGM=IEV90,PARM='LOAD,DESK,SYSPARM(IADD)'

v You can link-edit member CBROSREQ as part of the application load module.
You do not need to issue LOAD request before using the OSREQ calls.

v You can use member CBROSREQ without modification to support application
programs written in PL/1 or COBOL.

v You can modify member CBROSREQ as necessary to support applications
written in high-level languages other than PL/1 or COBOL.

v You must run the DB2 pre-compiler due to the EXEC SQL statements in the
code.

© Copyright IBM Corp. 1986, 2002 41

**
*
* DESCRIPTIVE NAME: Object Storage Request Sample interface
*
* FUNCTION: Provides a generalized interface for the Object Storage
* Request (OSREQ) macro.
*
* OPERATION: This routine is called with a parameter area that
* defines the function and pointers necessary to invoke
* the OSREQ macro and/or synchronize the databases that
* are connected to the current DB2 thread.
* If it is determined that an OSREQ function is requested,
* then the OSREQ parameter list is filled in with an
* MF=M form of the macro. The function is executed via an
* MF=E form.
* A call is made to an internal routine which will
* determine the need to synchronize the databases.
* If sync has been requested and the value in the
* field pointed to by the RETURN_CODE_PTR
* field is 0 or 4, then DB2 will be notified
* to commit all changes made to the databases
* since the last synchronization point.
* If sync has been requested and the value in the
* field pointed to by the RETURN_CODE_PTR
* field is greater than 4, DB2 will be
* notified to rollback all changes made to the data
* bases since the last synchronization point.
*
* NOTE: To generate the IADDRESS keyword in the OSREQ ACCESS function,
* specify the SYSPARM value as IADD in the PARM field of
* the EXEC JCL statement. For example:
*
* //ASSEMBLE EXEC PGM=IEV90,PARM='LOAD,DECK,SYSPARM(IADD)'
* INPUT: Register 1 must point to a 4-byte field that contains
* an address of an area that is described by
* the dsect named DATAAREA in this program.
* The DATAAREA must be filled in to indicate
* the function requested and provide the proper
* data for execution of the OSREQ macro.
* Register 13 must point to a 72-byte area into which this
* routine will save the registers at entry and
* from which registers will be restored at exit.
* Register 14 must point to the instruction address to which
* this routine will return.
* Register 15 must point to the entry point address of this
* routine.

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 1
of 10)

42 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

* OUTPUT: Register 15 will contain the return code received from
* the syncpoint processing.
* Fields pointed to by REASON_CODE_PTR and RETURN_CODE_PTR
* will contain the reason and return codes returned
* from OAM.
* Areas defined by the CBRIBUFL (for retrieve) and CBRIQEL
* (for query) will be filled in when the respective
* function is requested.
*
**
OSRSAMPL CSECT ,
OSRSAMPL AMODE 31
OSRSAMPL RMODE ANY

STM R14,R12,12(R13)
*
* Register 12 is the base for the code
*

LR R12,R15
USING OSRSAMPL,R12

*
* Register 11 is the base for the data area which is passed to this
* routine as a parameter.
*

L R11,0(R1)
USING DATAAREA,R11
LA R15,SAVE_AREA
ST R15,8(R13)
ST R13,SAVE_AREA+4
LR R13,R15

*
* The static OSREQ parameter list is copied into the work area
*

MVC PARM_LIST,STATIC_PARM_LIST
*
* The parameter list is now modified to establish all of the basic
* parameters of all of the OSREQ functions.
* A pointer with a value of zero is equivalent to an omitted parameter.
*

L R0,MESSAGE_AREA_PTR
L R2,OBJECT_SIZE_PTR
L R3,STORAGE_CLASS_PTR
L R4,MANAGEMENT_CLASS_PTR
L R5,RETENTION_PERIOD_PTR
L R6,RETRIEVE_OFFSET_PTR
L R7,RETRIEVE_LENGTH_PTR
L R8,RETURN_CODE_PTR
L R9,REASON_CODE_PTR

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 2
of 10)

Appendix A. Sample Program for Object Storage 43

OSREQ (STORE),MF=(M,PARM_LIST),
MSGAREA=(R0), DB2 error messages returned here
TOKEN=TOKEN_AREA, Contains logical OAM connection
COLLECTN=COLLECTION_NAME,
NAME=OBJECT_NAME,
SIZE=(R2),
STORCLAS=(R3),
MGMTCLAS=(R4),
RETPD=(R5),
OFFSET=(R6), Starting byte for retrieve
LENGTH=(R7), Length of retrieve
RETCODE=(R8), Register 15 is stored here
REACODE=(R9) Register 0 is stored here
CLC RELEASE_BUFFER,=CL3'YES'
BNE NORELBUF

OSREQ (STORE),MF=(M,PARM_LIST),
RELBUF=YES Will release pages after STORE

NORELBUF DS 0H
CLC FUNCTION_REQUEST,=CL8'ACCESS'
BNE TRY_STORE

*
* The logical connection to OAM is made here.
* If this is MVS batch, the call attach facility will be used
* to connect to DB2, and a thread will be OPENed to Plan (CBRIDBS).
* If this program runs in an environment where the connection
* and the thread to DB2 must be done by the external environment
* rather than OSREQ ACCESS, then the IADDRESS keyword will
* allow OSREQ to use the existing DB2 SQL interface rather than
* set up the call attach facility linkage to DB2. Use the
* IADDRESS parameter ONLY when this program MUST use the DB2
* interface established outside of OSREQ ACCESS. The primary
* users of IADDRESS are IMS/VS transaction programs.
* In all cases system control blocks will be created and/or modified
* to provide this access to OAM.
*
* To generate the keyword IADDRESS in OSREQ ACCESS function, a SYSPARM
* have a value IADD is specified in PARM field of the EXEC JCL
* statement
*

AIF ('&SYSPARM' EQ 'IADD').IA2
OSREQ ACCESS,MF=(E,PARM_LIST)

AGO .SKIP1
.IA2 ANOP
* In this sample we use DSNHLI as SQL interface module to DB2

L R2,=V(DSNHLI)
OSREQ ACCESS,MF=(E,PARM_LIST),

IADDRESS=(R2) Get the address of the interface
.SKIP1 ANOP

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 3
of 10)

44 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

*
* In the MVS batch environment, syncpoint processing may be desirable
* after ACCESS because the DB2 plan name can be changed at this time.
*

B TRY_SYNC_POINT
TRY_STORE DS 0H

CLC FUNCTION_REQUEST,=CL8'STORE'
BNE TRY_CHANGE

*
* This will store an object in the DB2 object tables or on
* an optical disk, depending on the storage class specified.
*

L R10,STORE_BUFFER_PTR
OSREQ STORE,MF=(E,PARM_LIST),

BUFLIST=(R10)
B TRY_SYNC_POINT

TRY_CHANGE DS 0H
CLC FUNCTION_REQUEST,=CL8'CHANGE'
BNE TRY_QUERY

*
* This invocation of the OSREQ macro will change information in the
* directory that has been specified. A zero pointer in DATAAREA
* will result in no change for the respective information. All
* pointers zero result in no change.
*

OSREQ CHANGE,MF=(E,PARM_LIST)
B TRY_SYNC_POINT

TRY_QUERY DS 0H
CLC FUNCTION_REQUEST,=CL8'QUERY'
BNE TRY_RETRIEVE

*
* Query the database for the directory information that was stored.
* The size of the object can be extracted from this information so
* that a GETMAIN can be done for the area necessary for the
* retrieve operation.
*

L R10,QUERY_BUFFER_PTR
OSREQ QUERY,MF=(E,PARM_LIST),

QEL=(R10)
B TRY_SYNC_POINT

TRY_RETRIEVE DS 0H
CLC FUNCTION_REQUEST,=CL8'RETRIEVE'
BNE TRY_DELETE

*

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 4
of 10)

Appendix A. Sample Program for Object Storage 45

* A partial retrieve can be done to obtain the first xxx bytes of
* the object. In some cases the application may have some control
* information in this area to allow retrieval of still another part
* of the object, (which could be an image).
*

L R10,RETRIEVE_BUFFER_PTR
OSREQ RETRIEVE,MF=(E,PARM_LIST),

BUFLIST=(R10)
B TRY_SYNC_POINT

TRY_DELETE DS 0H
CLC FUNCTION_REQUEST,=CL8'DELETE'
BNE TRY_UNACCESS

*
* This invocation will delete the object named from the object table
* and the directory.
*

OSREQ DELETE,MF=(E,PARM_LIST)
B TRY_SYNC_POINT

TRY_UNACCESS DS 0H
CLC FUNCTION_REQUEST,=CL8'UNACCESS'
BNE TRY_SYNC_POINT

*
* The logical connection to OAM should be broken before the TASK
* terminates so that OAM can remove any system control blocks
* that it built during ACCESS
*

OSREQ UNACCESS,MF=(E,PARM_LIST)
*
TRY_SYNC_POINT DS 0H
*
* Save register 15 in the return code area and register 0 in the
* reason code area after return from OSREQ. This is recommended
* because, under certain error conditions, the return code and reason
* code areas may not be set by OSREQ.
*

ST R15,0(,R8) Save Return Code
ST R0,0(,R9) Save Reason Code

*
* Each function should be "committed" or "rolled back" depending
* on the return and reason codes from OAM.

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 5
of 10)

46 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

* This routine should issue:
* SYNCPOINT with optional ROLLBACK in the CICS environment
* or SYNC or ROLL,ROLLB in the IMS environment
* or COMMIT or ROLLBACK in the TSO environment
* or CALL DSNALI to CLOSE and OPEN the thread to DB2 in the
* MVS batch environment (which is shown here).
*

SR R15,R15 Ensure return code 0 if
* no syncpoint processing.

CLC SYNC_POINT,=CL3'YES'
BNE EXIT

*
* A parameter list is constructed for the call to DSNALI
* to close the thread to commit or rollback changes.
*

LA R10,=CL12'CLOSE'
ST R10,WORK_AREA1 Set function to close.
LA R10,=CL8'SYNC' Prime for sync.

AIF ('&SYSPARM' EQ 'IADD').IA1
L R15,RETURN_CODE_PTR Check OAM return code
LA R9,4 to see if rollback should
C R9,0(R15) be issued instead of sync.
BNL SET_SYNC
LA R10,=CL4'ABRT'

SET_SYNC ST R10,WORK_AREA2 Set the action parameter.
OI WORK_AREA2,X'80' Set end of parameter list
BAL R10,LOAD_DSNALI This points R15 to DSNALI.
LA R1,WORK_AREA1 Point to parameter list.
CALL (15) Call DSNALI
LTR R15,R15 Check for good return
BNZ EXIT This routine has no

* recovery for bad returns
* from CLOSE. The caller
* should UNACCESS then ACCESS.
*

AGO .SKIP
.IA1 ANOP

LA R8,SQLSTUFF
USING SQLDSECT,R8
L R15,RETURN_CODE_PTR
LA R9,4
C R9,0(R15)
BNL SET_SYNC
EXEC SQL ROLLBACK
B EXIT

SET_SYNC EXEC SQL COMMIT
AGO .SKIP2

.SKIP ANOP

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 6
of 10)

Appendix A. Sample Program for Object Storage 47

*
* A parameter list is constructed for the call to DSNALI
* to open the thread to DB2. A new plan name could be specified
* or the same name (CBRIDBS) could be specified.
*

LA R10,=CL12'OPEN'
ST R10,WORK_AREA1 Set function to open.
LA R10,DB2_SUBSYS_ID
ST R10,WORK_AREA2 Set the ssid parameter.
LA R10,PLAN_NAME
ST R10,WORK_AREA3 Set the thread parameter.
OI WORK_AREA3,X'80' Set end of parameter list
BAL R10,LOAD_DSNALI This points R15 to DSNALI.
LA R1,WORK_AREA1 Point to parameter list.
CALL (15) Call DSNALI

.SKIP2 ANOP
EXIT DS 0H
*
* Restore all registers except regs 15 and 0, then return to caller
*

L R13,SAVE_AREA+4
L R14,12(R13)
LM R1,R12,24(R13)
BR R14

*
* This subroutine will determine if DSNALI is loaded.
* If it is, register 15 will be return with the address of DSNALI.
* If it is not, the module will be loaded and the address returned
* in register 15.
* If DSNALI cannot be loaded an 806 abend will occur, so be sure
* that there is a JOBLIB or STEPLIB pointing to the library that
* contains the load module DSNALI.
*
LOAD_DSNALI DS 0H

L R15,WORK_AREA4 DSNALI address is saved here.
LTR R15,R15
BNZR R10 Return with address of DSNALI
LOAD EP=DSNALI
ST R0,WORK_AREA4 Save for future calls.
LR R15,R0 Return address of DSNALI
BR R10 to caller

*

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 7
of 10)

48 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

* Register definitions
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
* All literals will be included at this point.
*

LTORG
*
* This static parameter list will be used as a template for
* OSREQ invocations in the executable code.
*
STATIC_PARM_LIST OSREQ (STORE),MF=(L)
STATIC_LIST_END EQU *
*
* This area is provided by the caller of this routine
*
DATAAREA DSECT

*
* This area must be obtained by the caller of OSRSAMPL and presented
* as a parameter to OSRSAMPL. It is expected that all subsequent calls
* will point to this same area. There is information in the area
* that will be used across calls.
*
**
SAVE_AREA DS 18F Save area for this module.

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 8
of 10)

Appendix A. Sample Program for Object Storage 49

* The following two named fields are set by the caller of OSRSAMPL.
* If the value in the field is not a valid value, the respective
* activity will not be executed.

FUNCTION_REQUEST DS CL8 OSREQ function request value
* ACCESS, STORE, etc. or other
SYNC_POINT DS CL3 Syncpoint request, YES or other

DS CL1 Reserved

* The following five fields are set by OSRSAMPL and should not be
* altered by the caller. Subsequent calls to OSRSAMPL will rely
* on the information stored here.

WORK_AREA1 DS A Used
WORK_AREA2 DS A for
WORK_AREA3 DS A parameters.
WORK_AREA4 DS A Holds address of DSNALI
TOKEN_AREA DS 2F OSREQ token, do not change it.

* The following fields are set by the caller of OSRSAMPL
* The pointers are not altered by OSRSAMPL but the data that
* the pointers reference may be.

RETURN_CODE_PTR DS A Pointer to OSREQ return code
* The return code is referenced by
* the syncpoint processing.
REASON_CODE_PTR DS A Pointer to OSREQ reason code
MESSAGE_AREA_PTR DS A Pointer to message area
RETENTION_PERIOD_PTR DS A Pointer to retention period
OBJECT_SIZE_PTR DS A Pointer to object size value
MANAGEMENT_CLASS_PTR DS A Pointer to management class parameter
STORAGE_CLASS_PTR DS A Pointer to storage class parameter
RETRIEVE_OFFSET_PTR DS A Pointer to offset value
RETRIEVE_LENGTH_PTR DS A Pointer to retrieve length value
RETRIEVE_BUFFER_PTR DS A Pointer to retrieve buffer list
STORE_BUFFER_PTR DS A Pointer to store buffer list
QUERY_BUFFER_PTR DS A Pointer to query buffer list
RELEASE_BUFFER DS CL3 RELBUF value, YES or other

DS CL1 Reserved

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 9
of 10)

50 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

*
* Plan name and DB2 subsystem identification MUST be provided
* for MVS batch sync point processing.
*
PLAN_NAME DS CL8 DB2 plan name for OPEN thread
DB2_SUBSYS_ID DS CL4 Installation subsystem name for DB2.
*
* Collection name and object name MUST be provided with every
* request for STORE, RETRIEVE, QUERY, CHANGE, and DELETE.
*
COLLECTION_NAME DS H Length of collection name

DS CL44 Collection name character string
OBJECT_NAME DS H Length of object name

DS CL44 Object name character string

* The following area is completely overlaid each time OSRSAMPL
* is called

PARM_LIST DS CL(STATIC_LIST_END-STATIC_PARM_LIST) Dynamic parm list

DS CL2528 DO NOT USE THIS AREA, BELONG TO CALLER
EXEC SQL INCLUDE SQLCA

SQLSTUFF DS CL(SQLDLEN)
DATA_AREA_END EQU *
OSRSAMPL CSECT
*

END OSRSAMPL

Figure 8. Sample Program for an Object Storage Request Using the OSREQ Macro (Part 10
of 10)

Appendix A. Sample Program for Object Storage 51

52 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Appendix B. Reason Codes

Table 1 contains only general-use return and reason codes. All other return and
reason codes are for diagnostic use only and are reserved for IBM internal use.
Refer to z/OS DFSMSdfp Diagnosis Reference for information about diagnostic
return and reason codes. For more detailed information concerning the keywords
referenced in this section, refer to “OSREQ Keyword Parameter Descriptions” on
page 23.

Table 1. Return/Reason Codes

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

0 0 0 0 0 The request has successfully completed. No action is required.

4 t x y z The request has completed with a warning condition:
t UNIQUE OSREQ REASON CODE
x INTERNAL FUNCTION CODE
y ERROR INDICATION
z RESERVED

Correct program, if
necessary.

4 4 x 1 z The QEL buffer segments are too short to accommodate
all of the available entries. As many entries as can fit in the
segments are returned.

Execute the QUERY with
a larger QEL buffer.

4 4 x 2 z An unavailable resource condition was detected during a
generic group query which excludes one or more
databases from the results. The QEL may contain entries
from the available databases.

Activate the databases, if
necessary.

4 4 x 3 z An UNACCESS has completed. The token has been
cleared. There are one or more requests outstanding. The
outstanding requests are not terminated.

Correct the program, if
necessary.

© Copyright IBM Corp. 1986, 2002 53

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

4 4 x 4 z A STORE or CHANGE request has completed. A collection
name was created, but one or more of the following
conditions has occurred as indicated by bits set in byte 3
(z):

Z=BIT MAP:
BIT 0 CATALOG ENTRY

created for the
collection

BIT 1 RESERVED
BIT 2 STORAGE CLASS

specified for the
collection
overridden

BIT 3 MANAGEMENT CLASS
specified for the
collection
overridden

BIT 4 RETENTION PERIOD
specified for the
object overridden

BIT 5 RESERVED
BIT 6 STORAGE CLASS

Specified for the
object overridden

BIT 7 MANAGEMENT CLASS
Specified for the
object overridden

Issue a QUERY to see
new parameters,
if desired.

BIT MAP
OF BYTE 3:

1XXX XXXX

XX1X XXXX

XXX1 XXXX

XXXX 1XXX

XXXX XX1X

XXXX XXX1

4 4 x 5 z DB2 SQL return code conversion, Module DSNTIAR, was
not found in the LINKLIST.

Ensure that module
DSNTIAR is available in
the LINKLIST.

4 4 x 6 z First backup copy retrieved; primary copy of the object was
not available with Access Backup active.

4 4 x 7 z Second backup copy retrieved; primary copy of the object
was not available with Access Backup active.

8 t x y z Request unsuccessful.
t UNIQUE OSREQ REASON CODE
x INTERNAL FUNCTION CODE
y FIRST PARAMETER WITH AN ERROR
z TYPE OF ERROR

Correct calling program.

8 24 x y z The parameter is unusable, incorrect, invalid, or
incomplete.

8 24 x 1 z PARAMETER LIST (MF=L)

8 24 x 1 1 The parameter list is in unusable storage. This means that
OAM encountered a virtual storage translation exception
(for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the parameter list
name or the parameter list name length.

8 24 x 1 2 The parameter list is invalid or incomplete.

8 24 x 2 z SIZE

54 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|

||
|

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

8 24 x 2 1 The size (fullword) passed to OAM on the OSREQ macro
is in unusable storage. This means that OAM encountered
a virtual storage translation exception (for example, an
OC4 ABEND) when it attempted to reference the area of
storage containing the size (fullword).

8 24 x 2 2 The size passed to OAM on the OSREQ macro contains
an invalid value.

8 24 x 3 z RETPD

8 24 x 3 1 The RETPD area (fullword) passed to OAM on the
OSREQ macro is in unusable storage. This means that
OAM encountered a virtual storage translation exception
(for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the RETPD
(fullword).

8 24 x 3 2 The RETPD passed to OAM on the OSREQ macro
contains an invalid value.

8 24 x 4 z STORCLAS

8 24 x 4 1 The STORCLAS area passed to OAM on the OSREQ
macro is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the STORCLAS.

8 24 x 4 2 The STORCLAS passed to OAM on the OSREQ macro
contains an invalid character.

8 24 x 4 3 The STORCLAS passed to OAM on the OSREQ macro
contains an invalid length value.

8 24 x 5 z MGMTCLAS

8 24 x 5 1 The MGMTCLAS area passed to OAM on the OSREQ
macro is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the MGMTCLAS.

8 24 x 5 2 The MGMTCLAS passed to OAM on the OSREQ macro
contains an invalid character.

8 24 x 5 3 The MGMTCLAS passed to OAM on the OSREQ macro
contains an invalid length value.

8 24 x 6 z QEL

8 24 x 6 1 The QEL Buffer List passed to OAM in the OSREQ macro
is in unusable storage. This means that OAM encountered
a virtual storage translation exception (for example, an
OC4 ABEND) when it attempted to reference the area of
storage containing the QEL Buffer List.

Appendix B. Reason Codes 55

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

8 24 x 6 2 The QEL Buffer List passed to OAM in the OSREQ macro
contains one of the following conditions:
v Incorrect ID
v Incorrect length field
v Incorrect version field
v The user turned the RESERVED BIT “on” in the Query

Buffer List Control Block.

8 24 x 6 4 The QEL Buffer passed to OAM in the OSREQ macro is in
unusable storage. This means that OAM encountered a
virtual storage translation exception (for example, an OC4
ABEND) when it attempted to reference the area of
storage containing the QEL Buffer.

8 24 x 7 z REASON/RETURN CODE STORAGE

8 24 x 7 1 The REASON code area passed to OAM from the OSREQ
macro is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the REASON code.

Check REGISTER 0 for
REASON code error
conditions.

8 24 x 7 2 The RETURN code area passed to OAM from the OSREQ
macro is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the RETURN code.

Check REGISTER 15 for
RETURN code error
conditions.

8 24 x 8 z BUFLIST

8 24 x 8 1 The BUFLIST passed to OAM from the OSREQ macro is
in unusable storage. This means that OAM encountered a
virtual storage translation exception (for example, an OC4
ABEND) when it attempted to reference the area of
storage containing the BUFLIST.

8 24 x 8 2 The BUFLIST passed to OAM in the OSREQ macro
contains one of the following conditions:
v Incorrect ID
v Incorrect length field
v Incorrect version field
v The user turned the RESERVED BIT “on” in the Data

Buffer List Control Block.

8 24 x 8 4 The BUFFER passed to OAM from the OSREQ macro is
in unusable storage.

8 24 x 8 5 The amount of buffer data provided on the STORE request
is less than the specified size of the object.

8 24 x 8 6 The amount of buffer data provided on the STORE request
is greater than the specified size of the object.

8 24 x 8 8 The amount of buffer data space provided on the
RETRIEVE request is insufficient for the object.

8 24 x 9 z TOKEN

56 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

8 24 x 9 1 The TOKEN area passed to OAM from the OSREQ macro
is in unusable storage. This means that OAM encountered
a virtual storage translation exception (for example, an
OC4 ABEND) when it attempted to reference the area of
storage containing the TOKEN.

8 24 x 9 2 The TOKEN set by the ACCESS macro is not being
specified correctly on subsequent OSREQ requests.

8 24 x A z OBJECT NAME

8 24 x A 1 The OBJECT NAME passed to OAM on the OSREQ
macro is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the OBJECT NAME or the
OBJECT NAME length.

8 24 x A 2 The OBJECT NAME passed to OAM on the OSREQ
macro is not fully qualified. The OBJECT NAME contains
an asterisk(*) as the last character in the name.

8 24 x A 3 The OBJECT NAME passed to OAM on the OSREQ
macro contains a qualifier longer than 8 characters.

8 24 x A 4 The OBJECT NAME passed to OAM on the OSREQ
macro contains an invalid character. One of the characters
in the OBJECT NAME is not an uppercase alphabetic
(A-Z), numeric (0–9), or national (@, #, $) character.

8 24 x A 5 The OBJECT NAME passed to OAM on the OSREQ
macro contains a null qualifier, meaning ONE of the
following is true:
v The first character of the OBJECT NAME is a period.
v The last character of the OBJECT NAME is a period.
v The OBJECT NAME contains two consecutive periods.

8 24 x A 6 The OBJECT NAME passed to OAM on the OSREQ
macro contains more than one asterisk.

8 24 x A 7 The OBJECT NAME passed to OAM on the OSREQ
macro contains an invalid qualifier. One of the qualifiers
does not start with an uppercase alphabetic character
(A-Z) or national character ($, #, @).

8 24 x A 8 The OBJECT NAME passed to OAM on the OSREQ
macro contains an imbedded blank.

8 24 x A 9 The OBJECT NAME passed to OAM on the OSREQ
macro has an invalid length. The length is zero, negative,
or longer than 44 characters.

8 24 x B z The OSREQ function.

8 24 x B 2 The function specified is unknown.

8 24 x C z OFFSET

Appendix B. Reason Codes 57

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

8 24 x C 1 The OFFSET passed to OAM from the OSREQ macro is in
unusable storage. This means that OAM encountered a
virtual storage translation exception (for example, an OC4
ABEND) when it attempted to reference the area of
storage containing the OFFSET.

8 24 x C 2 The OFFSET value is larger than the length of the object.

8 24 x C 3 The OFFSET value is negative.

8 24 x D z LENGTH

8 24 x D 1 The LENGTH passed to OAM from the OSREQ macro is
in unusable storage. This means that OAM encountered a
virtual storage translation exception (for example, an OC4
ABEND) when it attempted to reference the area of
storage containing the LENGTH.

8 24 x D 2 The LENGTH value requested, plus the value specified on
the OFFSET keyword, is larger that the SIZE of the object.

8 24 x D 3 The LENGTH value is negative.

8 24 x E z MSGAREA

8 24 x E 1 The MSGAREA passed to OAM from the OSREQ macro is
in unusable storage. This means that OAM encountered a
virtual storage translation exception (for example, an OC4
ABEND) when it attempted to reference the area of
storage containing the MSGAREA.

8 24 x E 2 The MSGAREA length value is negative.

8 24 x F z COLLECTION NAME

8 24 x F 1 The COLLECTION NAME passed to OAM on the OSREQ
macro is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the COLLECTION NAME or
the COLLECTION NAME length.

8 24 x F 2 The COLLECTION NAME passed to OAM on the OSREQ
MACRO is not fully qualified. The COLLECTION NAME
contains an asterisk (*) as the last character in the name.

8 24 x F 3 The COLLECTION NAME passed to OAM on the OSREQ
macro contains a qualifier longer than 8 characters.

8 24 x F 4 The COLLECTION NAME passed to OAM on the OSREQ
macro contains an invalid character. One of the characters
in the COLLECTION NAME is not an uppercase alphabetic
(A-Z), numeric (0–9), or national (@, #, $) character.

58 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

8 24 x F 5 The COLLECTION NAME passed to OAM on the OSREQ
macro contains a null qualifier, meaning ONE of the
following is true.
v The first character of the COLLECTION NAME is a

period.
v The last character of the COLLECTION NAME is a

period.
v The COLLECTION NAME contains two consecutive

periods.

8 24 x F 6 Reserved

8 24 x F 7 The COLLECTION NAME passed to OAM on the OSREQ
macro contains an invalid qualifier. One of the qualifiers
does not start with an uppercase alphabetic character
(A-Z) or national character ($, #, @).

8 24 x F 8 The COLLECTION NAME passed to OAM on the OSREQ
macro contains an imbedded blank.

8 24 x F 9 The COLLECTION NAME passed to OAM on the OSREQ
macro has an invalid length. The length is zero, negative,
or longer than 44 characters.

8 24 x 10 z IADDRESS ERROR

8 24 x 10 10 The IADDRESS passed to OAM from the OSREQ macro
points to unusable storage. This means that OAM
encountered a virtual storage translation exception (for
example, an OC4 ABEND) when it attempted to reference
the area of storage containing the IADDRESS.

8 24 x 11 z TTOKEN

8 24 x 11 1 The TTOKEN passed to OAM is in unusable storage. This
means that the tracking token is contained in the virtual
storage area for which the application program does not
have both fetch and store authorization. This is an
indication of a programming logic error in the application
program that is issuing the OSREQ macro invocation.

8 28 x y z An IADDRESS routine error was detected during execution
of the DB2 language interface routine specified by
IADDRESS
x, y, z SYSTEM/USER COMPLETION CODE

8 2C x y z No valid object was found.
z RESERVED AND UNDEFINED

8 2C x 1 z Segment not found in object storage 32k or 4k table.

8 2C x 2 z The object segments entry was not found in the object
directory.

8 2C x 3 z An OSREQ retrieval request with VIEW=BACKUP was
received, but a backup copy of the object does not exist.

8 2C x 4 z An OSREQ retrieval request with VIEW=BACKUP2 was
received, but a second backup copy of the object does not
exist.

Appendix B. Reason Codes 59

|

||
|

||
|
|

Table 1. Return/Reason Codes (continued)

RETURN
CODE

REASON
CODE

(BYTES) ERROR
DESCRIPTION

INSTALLATION
ACTION0 1 2 3

8 30 x y z The object already exists.
z RESERVED AND UNDEFINED

8 30 x 1 z The directory entry already exists.

8 30 x 2 z The object segment already exists.

8 34 x y z Request rejected for this task.
z RESERVED AND UNDEFINED

8 34 x 1 z A request was issued from a task control block (TCB) other
than the initial ACCESS request TCB.

8 34 x 2 z An ACCESS request is issued from the TCB while the prior
ACCESS request is still active.

60 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Appendix C. Performance Considerations and Object Data
Reblocking

This appendix documents diagnosis, modification or tuning information which is
provided to help you write an efficient application program that uses the OSREQ
macro.

Performance Considerations
Allowing page release by specifying RELBUF=YES on a STORE request minimizes
unnecessary page-outs of buffer segment pages to auxiliary storage after they have
been written to object storage.

Attention: RELBUF=YES may release pages that contain data that has not been
committed to the database.

A generic QUERY request may use large amounts of instructions and virtual
storage for the output, plus slow other accesses to the directory.

Database synchronization should follow the OSREQ invocation as soon as possible
to minimize contention for resources.

When processing quantities of large objects, interactions among the following
factors can degrade performance: virtual and real storage requirements, paging and
auxiliary storage, data input/output, and movement (copying) of object data. All of
these considerations can be affected by how the object data is structured by the
application and what additional processing is required for OAM to complete the
request. Applications can optimize the object data storage to minimize the impact of
the above considerations, as described in the next section.

Object Data Reblocking
OAM attempts to process the data in the caller’s buffers with a minimum of data
movement. If the first or only buffer is large enough for all of the object data and the
buffer immediately follows the buffer list, then the data is not moved within the
caller’s address space.

If the conditions described are not met, OAM obtains temporary storage to reblock
the data. The virtual storage needed in addition to the calling program’s
requirements might be as great as the size of the largest object.

Object Storage
If the object data is not in one contiguous block in a storage area immediately
following the end of the buffer list, the object data is reblocked into temporary
storage within the caller’s address space. The temporary storage requirements and
uses are as follows:

v If the object is to be stored initially on DASD, temporary storage is obtained
based on the total length of the object data:

– If the total object data length is 3980 bytes or less, a temporary storage buffer
of 4KB or less is obtained.

– If the total object data length is greater than 3980 bytes, a temporary storage
buffer of 32KB is obtained.

© Copyright IBM Corp. 1986, 2002 61

v If the object is to be stored initially on optical media, temporary storage that is
large enough to contain the entire object is obtained.

In all cases where the object data requires reblocking, the object data segments are
moved from the caller’s buffers into the temporary storage buffer. The object data is
reblocked into one contiguous block starting at the beginning of the temporary
buffer.

For objects that are stored on DASD and are 3980 bytes or less in length, or for
objects that are stored on optical media, only one block is created and stored.

For objects that are stored on DASD and are greater than 3980 bytes in length, the
following steps are followed:
v Object data is moved into the temporary storage buffer until it is full.
v The object data in the temporary buffer is stored.
v The process of reblocking any remaining object data into the temporary buffer is

repeated until all object data has been stored.

Object Retrieval
For objects that are retrieved from DASD (DB2), the object data is retrieved directly
into the caller’s buffer if the following conditions are met:
v The first or only buffer specified by the caller is contiguous to the buffer list.
v The first or only buffer is large enough to contain the entire object.
v The entire object is requested (not a part of the object).

For objects that are retrieved from optical storage, the object data is retrieved
directly into the caller’s buffer if the following conditions are met:
v The first or only buffer specified by the caller is contiguous to the buffer list.
v The first or only buffer is large enough to contain the entire object or the

requested part of the object.

If any of the above conditions are not met, temporary storage is obtained for
retrieving the object data. The virtual storage needed in addition to the calling
program’s requirements might be as great as the size of the largest object.

If the object data length is greater than the first buffer, the first buffer is completely
filled, and the remainder of the object data is moved into the following buffers, filling
each buffer until the last of the object data is moved into the last buffer.

62 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Appendix D. Using the CBRUXSAE Installation Exit

The CBRUXSAE installation exit provides security authorization checking against
users performing OSREQ transactions on object data. This exit is used at the
application programming interface (OSREQ macro) level.

As originally provided, CBRUXSAE automatically returns a return code of zero
indicating that the user ID is authorized to perform the OSREQ function. You must
substitute this code with a validation routine to determine authority for a specific
user ID if you wish authorization checking to be performed at the application
interface level.

Register Contents on Entry to CBRUXSAE
The following are the register contents on entry to the CBRUXSAE installation exit:

Register Contents

0 Contents on entry are unpredictable.

1 Contains the address of a parameter list, which contains four
pointers:

1. Pointer to an 8-character field, which contains the OSREQ
function being performed. Possible values are STORE,
RETRIEVE, QUERY, CHANGE, DELETE.

2. Pointer to a 44-character field, which contains the object name
associated with the requested function.

3. Pointer to a 44-character field, which contains the collection
name associated with the requested function.

4. Pointer to an 8-character field, which contains the user ID
associated with the requested function.

2–8 Contents on entry are unpredictable.

9 Contains the address of a 1024-byte storage area that can be used
as automatic storage for the exit. The storage provided adheres to
environment dependent restrictions. If more storage is needed, or
there is a preference to obtain your own storage, environment
dependent functions must adhere to GETMAIN restrictions. For
example, a CICS environment must use CICS GETMAIN service to
obtain storage instead of using MVS OBTAIN.

10–12 Contents on entry are unpredictable.

13 Contains the address of a 72 byte save area (standard linkage).

14 Contains a return point address to the caller (standard linkage).

If the return code from CBRUXSAE is not zero, return and reason codes are issued
indicating that the user ID is not authorized to perform the particular OSR function.
For more informtion concerning return and reason codes associated with this exit,
refer to z/OS DFSMSdfp Diagnosis Reference.

© Copyright IBM Corp. 1986, 2002 63

Programming the CBRUXSAE Exit Correctly
CBRUXSAE is provided as a separate load module that needs to be link-edited into
LINKLIB and invoked from OSR by the MVS LINK macro.

CBRUXSAE is invoked in the following state:

v Task mode (not SRB)

v Non-cross-memory mode (PASN=SASN=HASN)

v No MVS locks held

v Enabled for I/O and external interrupts

v Problem or supervisor state (the state of the invoker of the OSREQ macro
interface)

v Key of the caller (invoker of the OSREQ macro interface)

CBRUXSAE must meet the following requirements:

v 31-bit addressing mode

v Reentrant

v Reusable

v Refreshable

Abends incurred by CBRUXSAE are sent to the caller’s recovery routine; no
additional ESTAE for this exit is provided. See Figure 9 on page 65 for a sample of
the CBRUXSAE installation exit.

Sample CBRUXSAE Installation Exit
Figure 9 on page 65 shows the sample transaction security authorization installation
exit, CBRUXSAE:

64 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|

UXSAE TITLE 'CBRUXSAE - SAMPLE OSREQ TX AUTH INSTALLATION EXIT'
CBRUXSAE START 0 SAMPLE OSREQ TX AUTH INST EXIT

SPACE 2
**** START OF SPECIFICATIONS **
* *
* MODULE NAME: CBRUXSAE *
* *
* DESCRIPTIVE NAME: SAMPLE OSREQ TRANSACTION SECURITY *
* AUTHORIZATION INSTALLATION EXIT *
* *
* FUNCTION: *
* MODULE CBRUXSAE IS INVOKED EACH TIME A REQUEST IS MADE TO *
* OAM VIA THE OSREQ INTERFACE. CBRUXSAE MAY REFUSE TO ALLOW *
* THE USER TO PERFORM THE REQUESTED TRANSACTION BY RETURNING *
* A NON_ZERO RETURN CODE IN REGISTER 15. *
* *
* THE INSTALLATION CAN PERFORM AUTHORIZATION CHECKING BY ANY *
* MEANS IT DEEMS REASONALBE. FOR EXAMPLE: *
* 1. INVOKE RACF VIA THE SAF RACROUTE MACRO *
* 2. USE A TABLE-DRIVEN METHOD OF AUTHORIZATION CHECKING, *
* USING A DATASET OF USERIDS AND THE COLLECTIONS/OBJECTS *
* A USER IS AUTHORIZED TO PERFORM FUNCTIONS AGAINST. *
* THE AUTHORIZATION CHECKING MAY BE AT THE GRANULARITY THAT *
* THE INSTALLATION DECIDES IS NECESSARY, USING THE VALUES *
* PASSED IN TO THIS EXIT. *
* *
* NOTES: *
* THIS SAMPLE RETURNS WITH A RETURN CODE OF 16, TELLING OAM *
* TO CONTINUE PROCESSING. *
* *
* DEPENDENCIES: MVS/SP VERSION 4.3.0 *
* DFSMS/MVS 1.2.0 *
* *
* CHARACTER CODE: EBCDIC *
* *
* RESTRICTIONS: NONE *
* *
* REGISTER CONVENTIONS: *
* R0 - UNPREDICTABLE *
* R1 - STANDARD LINKAGE REGISTER *
* R2 - UNPREDICTABLE *
* R3 - UNPREDICTABLE *
* R4 - UNPREDICTABLE *
* R5 - UNPREDICTABLE *
* R6 - UNPREDICTABLE *
* R7 - UNPREDICTABLE *
* R8 - UNPREDICTABLE *
* R9 - ADDRESS OF AUTODATA AREA FOR EXIT *
* R10 - UNPREDICTABLE *
* R11 - INPUT BASE REGISTER *
* R12 - CBRUXSAE BASE REGISTER *
* R13 - STANDARD LINKAGE REGISTER *
* - SAVE AREA ADDRESS *
* R14 - STANDARD LINKAGE REGISTER *
* - RETURN POINT ADDRESS *
* R15 - STANDARD LINKAGE REGISTER *
* - ENTRY POINT ADDRESS *
* - RETURN CODE *
* *

Figure 9. Sample CBRUXSAE Installation Exit (Part 1 of 4)

Appendix D. Using the CBRUXSAE Installation Exit 65

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

* MODULE TYPE: CONTROL SECTION *
* *
* PROCESSOR: ASSEMBLER H *
* *
* ATTRIBUTES: *
* *
* LOCATION: LINKLIB *
* STATE: PROBLEM OR SUPERVISOR (CALLER) *
* AMODE: 31 *
* RMODE: ANY *
* KEY: KEY OF CALLER *
* MODE: TASK *
* SERIALIZATION: UNLOCKED *
* TYPE: REENTRANT, REUSABLE, REFRESHABLE *
* AUTHORIZATION: NONE *
* *
* LINKAGE: STANDARD LINKAGE CONVENTIONS *
* *
* CALLING SEQUENCE: *
* CBRUXSAE IS INVOKED IN THE USER'S ADDRESS SPACE USING THE *
* MVS LINK MACRO *
* *
* INPUT: *
* REGISTER 1 WILL CONTAIN THE ADDRESS OF A PARAMETER LIST *
* WHICH WILL CONTAIN 4 POINTERS: *
* 1. POINTER TO 8 CHARACTER FIELD WHICH CONTAINS THE *
* OSREQ FUNCTION BEING PERFORMED *
* POSSIBLE FUNCTIONS ARE: STORE *
* RETRIEVE *
* CHANGE *
* QUERY *
* DELETE *
* 2. POINTER TO 44 CHARACTER FIELD WHICH CONTAINS THE *
* OBJECT NAME ASSOCIATED WITH THE REQUESTED FUNCTION *
* 3. POINTER TO 44 CHARACTER FIELD WHICH CONTAINS THE *
* COLLECTION NAME ASSOCIATED WITH THE REQUESTED FUNCTION *
* 4. POINTER TO 8 CHARACTER FIELD WHICH CONTAINS THE *
* USERID ASSOCIATED WITH THE REQUESTED FUNCTION *
* REGISTER 9 WILL CONTAIN THE ADDRESS OF A 1024 BYTE AREA OF *
* STORAGE WHICH CAN BE USED AS THIS PROGRAM'S AUTOMATIC STORAGE*
* *
* OUTPUT: *
* A RETURN CODE IS PLACED IN REGISTER 15: *
* CODE MEANING *
* 0 USER IS AUTHORIZED TO PERFORM THIS FUNCTION *
* 16 USER IS AUTHORIZED TO PERFORM THIS FUNCTION, DO @01A*
* NOT CALL THIS EXIT AGAIN (BYPASS THIS METHOD OF @01A*
* AUTHORIZATION CHECKING @01A*
* NON-ZERO OTHER THAN 16 @01C*
* ANY NON-ZERO RC, OTHER THAN 16 IS TAKEN TO MEAN @01C*
* THE USER IS NOT AUTHORIZED TO PERFORM THIS FUNCTION. *
* THE INSTALLATION CAN SPECIFY DIFFERENT RETURN CODES *
* TO MEAN DIFFERENT TYPES OF AUTHORIZATION FAILURES. *
* THE NON-ZERO RETURN CODE RETURNED BY THIS EXIT WILL *
* BE PRESENTED TO THE CALLER IN THE THIRD BYTE OF THE *
* FAILING REASON CODE. *
* *

Figure 9. Sample CBRUXSAE Installation Exit (Part 2 of 4)

66 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

* EXIT NORMAL: *
* RETURN TO THE CALLER WITH RETURN CODE 0 OR NON-ZERO *
* RETURN CODE, INDICATING AUTHORIZATION FAILURE *
* *
* EXIT ERROR: NONE *
* *
* EXTERNAL REFERENCES: *
* *
* ROUTINES: NONE *
* *
* CONTROL BLOCKS: NONE *
* *
* EXECUTABLE MACROS: *
* RETURN *
* SAVE *
* *
* MESSAGES: NONE *
* *
* ABEND CODES: NONE *
* *
* CHANGE ACTIVITY: *
* *
* $L0=OW20657 1B0 950501 TUCLJT: Initial release *
* *
* $01=OW36250 1E0 990104 TUCLJT: Change default to return a @01A*
* RC=16 to indicate that the @01A*
* exit is not used, therefore @01A*
* should not be invoked again @01A*
* (Roll up of OW35784 1C0, 1D0)@01A*
* *
**** END OF SPECIFICATIONS **

TITLE 'CBRUXSAE INPUT PARAMETERS'

* *
* MODULE INPUT PARAMETER DEFINITIONS *
* *

UXSAEINP DSECT ,
FUNC_PTR DS 1F ADDRESS OF FUNCTION
OBJN_PTR DS 1F ADDRESS OF OBJECT NAME
COLN_PTR DS 1F ADDRESS OF COLLECTION NAME
USER_PTR DS 1F ADDRESS OF USERID
SAVE DS CL72 SAVE AREA
DATDPTR DS 1F AUTO DATA AREA ADDRESS

SPACE 2
TITLE 'CBRUXSAE WORKING STORAGE'

* *
* MODULE AUTO DATA AREA DEFINITIONS *
* *

WORKAREA DSECT , CBRUXSAE AUTO DATA AREA
SAVEAREA DS 18F SAVE AREA

DS CL440 AVAILABLE STORAGE
WORKLEN EQU *-WORKAREA

SPACE 2

Figure 9. Sample CBRUXSAE Installation Exit (Part 3 of 4)

Appendix D. Using the CBRUXSAE Installation Exit 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

TITLE 'STANDARD REGISTER DEFINITIONS'

* *
* STANDARD REGISTER DEFINITIONS *
* *

R0 EQU 0 GENERAL REGISTER 0
R1 EQU 1 GENERAL REGISTER 1
R2 EQU 2 GENERAL REGISTER 2
R3 EQU 3 GENERAL REGISTER 3
R4 EQU 4 GENERAL REGISTER 4
R5 EQU 5 GENERAL REGISTER 5
R6 EQU 6 GENERAL REGISTER 6
R7 EQU 7 GENERAL REGISTER 7
R8 EQU 8 GENERAL REGISTER 8
R9 EQU 9 GENERAL REGISTER 9
R10 EQU 10 GENERAL REGISTER 10
R11 EQU 11 GENERAL REGISTER 11
R12 EQU 12 GENERAL REGISTER 12
R13 EQU 13 GENERAL REGISTER 13
R14 EQU 14 GENERAL REGISTER 14
R15 EQU 15 GENERAL REGISTER 15

* MISCELLANEOUS CONSTANT VALUES *

UXSAEDIS EQU 16 RC=16 TELLS OSR TO DISABLE @01A
* FURTHER CALLS TO THIS SECURITY @01A
* AUTHORIZATION EXIT AND HANDLE @01A
* SUBSEQUENT INVOCATIONS AS @01A
* AUTHORIZED USERS @01A

TITLE 'CBRUXSAE - SAMPLE OSREQ TX AUTH INSTALLATION EXIT'

* *
* CBRUXSAE ENTRY POINT *
* *

CBRUXSAE CSECT , SAMPLE OSREQ TX AUTH INST EXIT
CBRUXSAE AMODE 31
CBRUXSAE RMODE ANY

SAVE (14,12),, SAVE CALLER'S REGISTERS AND +
'CBRUXSAE' MARK ENTRY POINT

LR R12,R15 COPY ENTRY POINT ADDRESS
USING CBRUXSAE,R12 CBRUXSAE BASE REGISTER
USING WORKAREA,R9 ADDRESSIBILITY TO DATA AREA
ST R13,SAVEAREA+4 BACKWARD CHAIN SAVE AREAS
LA R0,SAVEAREA CBRUXSAE SAVE AREA ADDRESS
ST R0,8(,R13) FORWARD CHAIN SAVE AREAS
LR R13,R0 SET CBRUXSAE SAVE AREA ADDRESS
LR R11,R1 STORE PARAMETERS IN DATA AREA
USING UXSAEINP,R11 ADDRESSIBILITY TO PARAMETERS
SPACE 2

* *
* RETURN TO THE CALLER *
* *

EXIT DS 0H

L R13,SAVEAREA+4 RESTORE CALLER'S SAVE AREA
LA R10,UXSAEDIS SET DISABLE RETURN CODE @01A
LR R15,R10 SAVE RETURN CODE @01C
RETURN (14,12), RESTORE CALLER'S REGISTERS, THEN +

RC=(15) RETURN TO CALLER
SPACE 2
END CBRUXSAE

Figure 9. Sample CBRUXSAE Installation Exit (Part 4 of 4)

68 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1986, 2002 69

70 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

© Copyright IBM Corp. 1986, 2002 71

IBM Corporation
Information Enabling Requests
Dept. DZWA
5600 Cottle Road
San Jose, CA 95193 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This publication does not contain programming interface information.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

BookManager
CICS
DATABASE2
DB2
DFSMSdfp

DFSMS/MVS
ESA/370
ESA/390
GDDM
IBM

IMS
IMS/ESA
MVS
MVS/DFP
MVS/ESA

MVS/SP
OS/390
RACF
z/OS

The following terms are trademarks of other companies:

LMSI Laser Magnetic Storage International

72 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Glossary

The terms in this glossary are defined as they
pertain to the Object Access Method.

This glossary may include terms and definitions
from:

v The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright (ANSI). Copies may be purchased
from the American National Standards Institute,
11 West 42nd Street, New York 10036.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International
Electrotechnical Commission (ISO/IEC
JTC2/SC1).

v IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

A
access path. The path DB2 uses to get to data
specified in SQL statements. An access path can
involve an index, a sequential search, or a combination
of both.

ACS. Automatic class selection.

application plan. The control structure produced
during the bind process and used by DB2 to process
SQL statements during application execution.

attribute. A named property of an entity.

automatic class selection (ACS). Routines that
determine the storage class, management class, and
storage group for a collection. The storage administrator
is responsible for establishing ACS routines appropriate
to an installation’s storage requirements.

B
bind. The process by which the output from the DB2
precompiler is converted to a usable control structure
called an application plan. This process is the one
during which access paths to the data are selected and
some authorization checking is performed.

block. See sector.

C
CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment
facility that allows application programs to connect to
and use DB2.

cartridge. See optical cartridge.

Channel-to-channel (CTC). A method of connecting
two computing devices.

CICS. Customer Information Control System.

class transition. A change in an object’s management
class or storage class when an event occurs that brings
about a change in an object’s service level or
management criteria. Class transition occurs during a
storage management cycle.

collection. A group of objects that have similar
performance, availability, backup, retention, and class
transition characteristics. A collection is used to catalog
a large number of objects which, if cataloged separately,
could require an extremely large catalog.

commit. In DB2, to cause all changes that have been
made to the database file since the last commitment
operation to become permanent, and the records to be
unlocked so they are available to other users.

CTC. Channel-to-channel.

D
data class. A list of allocation attributes that the
system uses for the creation of data sets.

DASD. Direct Access Storage Device.

DATABASE 2. A relational database management
system.

DATABASE 2 interactive. An interactive relational
database management program.

DB2. IBM DATABASE 2.

DB2I. DATABASE 2 interactive.

DFSMSdfp. Data Facility Storage Management
Subsystem data facility product.

DFSMS/MVS. Data Facility Storage Management
Subsystem/Multiple Virtual Storage.

disk. See optical disk.

G
gigabyte. When referring to storage capacity, two to
the thirtieth power; 1 073 741 824 in decimal notation.

© Copyright IBM Corp. 1986, 2002 73

grant. A DB2 process that authorizes users to access
data.

GTF. Generalized trace facility.

I
ICF. Integrated catalog facility.

ID. Identification.

image copy. An exact reproduction of all or part of a
table space. DB2 provides utilities to make full image
copies or incremental image copies.

IMS. Information Management System.

index. A set of pointers that are logically ordered by
the values of a key. Indexes provide quick access to
data and can enforce uniqueness on the rows in a DB2
storage table.

installation-wide exit. The means specifically
described in an IBM software product’s documentation
by which an IBM software product may be modified by a
customer’s system programmers to change or extend
the functions of the IBM software product. Such
modifications consist of exit routines written to replace
one or more existing modules of an IBM software
product, or to add one or more modules or subroutines
to an IBM software product, for the purpose of
modifying (including extending) the functions of the IBM
software product.

Interactive System Productivity Facility. An
interactive base for ISMF.

IPL. Initial program load.

ISMF. Interactive Storage Management Facility.

ISO. International Organization for Standardization.

ISPF. Interactive System Productivity Facility.

L
LCS. Library Control System.

Library Control System. Component of OAM that
writes and reads objects on optical disk storage, and
manipulates the optical volumes on which the objects
reside.

M
management class. A named collection of
management attributes describing the retention, backup,
and storage class transition characteristics for a group
of objects in an object storage hierarchy.

MVS/ESA. Multiple Virtual Storage/Enterprise System
Architecture.

O
OAM. Object Access Method.

OAM Storage Management Component (OSMC).
Determines where object should be stored, manages
object movement within the objects storage hierarchy,
and manages expiration attributes based on the
installation storage management policy.

object. A named byte stream having no specific format
or orientation.

Object Access Method (OAM). A program that
provides object storage, object retrieval, and object
storage hierarchy management. OAM isolates
applications from storage devices, storage
management, and storage device hierarchy
management.

Object Storage and Retrieval (OSR). Component of
OAM that stores, retrieves, and deletes objects. OSR
stores objects in the storage hierarchy and maintains
the information about these objects in DB2 databases.

Object Storage Request macro (OSREQ). This
macro serves as an application program interface for
storing, retrieving, and deleting objects using OAM.

optical cartridge. A plastic case that protects and
contains the optical disk and permits insertion into an
optical drive.

optical disk. A disk that uses laser technology for data
storage and retrieval.

optical disk drive. The mechanism used to seek,
read, and write data on an optical disk. An optical disk
drive may reside in an optical library or as a stand-alone
unit.

optical library. A disk storage device that houses
optical disk drives and optical disks, and contains a
mechanism for moving optical disks between a storage
area and optical disk drives.

optical volume. One side of a double-sided optical
disk.

OSMC. OAM Storage Management Component.

OSR. Object Storage and Retrieval.

OSREQ. Object Storage Request macro.

OVTOC. Optical volume table of contents.

74 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

P
pseudo optical library. A set of shelf-resident optical
volumes associated with either a stand-alone or an
operator-accessible optical disk drive; see also real
optical library.

R
real optical library. Physical storage device that
houses optical disk drives and optical cartridges, and
contains a mechanism for moving optical disks between
a cartridge storage area and optical disk drives; see
also pseudo optical library.

row. The horizontal component of a DB2 table. A row
consists of a sequence of values, one for each column
of a table.

S
SCDS. Source control data set.

sector. On disk storage, an addressable subdivision of
a track used to record one block of a program or data.

shelf-resident optical volume. An optical volume that
resides outside of an optical library.

SMP/E. System Modification Program/Extended.

SMS. Storage Management Subsystem.

SPUFI. SQL processing using file input.

SQL. Structured query language.

SQLCODE. Structured query language return code.

SQL Processing Using File Input. Used to perform
groups of SQL statements in batch or online mode.
SPUFI is option one under DB2I.

stand-alone optical drive. An optical drive housed
outside of an optical library.

storage class. A named list of storage attributes. The
list of attributes identifies a storage service level
provided for data associated with the storage class. No
physical storage is directly implied or associated with a
given storage class name.

storage group. A named collection of physical devices
to be managed as a single object storage area. It
consists of an object directory (DB2 table space) and
object storage on DASD (DB2 table spaces), with
optional library-resident and shelf-resident optical
volumes.

storage hierarchy. An arrangement in which data can
be stored in several types of storage devices that have
different characteristics, such as capacity and speed of
access.

storage management cycle. An invocation of the
OAM Storage Management Component (OSMC). The
purpose of the storage management cycle is to ensure
that every object scheduled for processing is placed in
the proper level of the object storage hierarchy (as
specified by its storage class), is expired or is backed
up (as specified by its management class or by an
explicit application request), and, if necessary, is flagged
for action during a subsequent storage management
cycle.

structured query language. A DB2 query tool.

System Modification Program/Extended. Basic tool
for installing software changes in programming systems.
It controls these changes at the element (module or
macro) level, which helps protect system integrity.

T
table. In DB2, a named data object consisting of a
specific number of columns and some number of
unordered rows.

table space. A page set used to store the records of
one or more DB2 tables.

TSO. Time Sharing Option.

U
user exit. A programming service provided by an IBM
software product that may be requested by an
application program for the service of transferring
control back to the application program upon the later
occurrence of a user-specified event.

V
vary offline. To change the status of an optical library
or an optical drive from online to offline. Varying a
library offline does not affect the online/offline status of
the drives it contains. When a library or drive is offline,
no data may be accessed on optical disks through the
offline drive or the drives in the offline library.

vary online. To change the status of an optical library
or an optical drive from offline to online. This makes the
drive or drives in the library being varied online
available for the optical disk access.

Glossary 75

76 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Index

A
ACCESS function

description 7
initializing the OSREQ interface 9
parameter keywords

IADDRESS 9, 11, 24, 28
MF 9, 24
MSGAREA 9, 25
REACODE 9, 26
RETCODE 9, 27
TOKEN 9, 27
TTOKEN 9, 28

syntax 9
accessibility 69
ACS (Automatic Class Selection)

data class 3
description 3
management class names 21
SMS construct definitions 3
storage class assignment 13
storage class name 21
storage group 3

B
buffer

CBRIBUFL macro 33
data buffer list structure diagram 34
descriptor 33, 35
keyword parameter 23
list 21
object data 33
object data reblocking 61
page release segments 26
performance considerations 61
query buffer list structure diagram 37
RETRIEVE function 34
temporary storage 61

BUFLIST keyword parameter
as pointer to CBRIBUFL macro area 33
format 23
functions used in

RETRIEVE 17
STORE 20

specifying virtual storage buffers 18, 19

C
CBRIBIND SAMPLIB job 31
CBRIBUFL macro

data buffer list structure diagram 34
description 33
DSECTs 33

OBL 33
OBLB 33
OBLBDESC 33

used with a RETRIEVE request 34

CBRIBUFL macro (continued)
used with a STORE request 34

CBRIQEL macro
description 35
DSECTs 35

QEL 35
QELB 35
QELBDESC 35
QELQ 35

order retrieval keys 35
query buffer list structure diagram 37

CBROSREQ SAMPLIB job 41
CBRUXSAE installation exit

abend handling 64
description 63
programming notes 64
register contents on entry 63
sample exit 64
validation routine 63

CHANGE function
changing an object’s management

characteristics 11
date

processing expiration 31
updating last referenced 13
updating pending action 13

description 7
parameter keywords

COLLECTN 12, 24
MF 12, 24
MGMTCLAS 12, 25
MSGAREA 12, 25
NAME 12, 25
REACODE 12, 26
RETCODE 12, 27
RETPD 12, 27
STORCLAS 12, 27
TOKEN 12, 27
TTOKEN 12, 28

syntax 12
CICS (Customer Information Control System)

object storage 2
synchronization with SYNCPOINT 29
usage requirements 29
using the OSREQ macro 28

class
assignments 22
data 3
defaults 4
explicit names 6
management 3
storage 3

collection
description 1, 4
error conditions 30
naming conventions 6
object defaults 4, 19
processing an object in a collection 22

© Copyright IBM Corp. 1986, 2002 77

COLLECTN keyword parameter
collection name length field 18
description 24
format 24
functions used in

CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 20

identifying an object for deletion 14
querying on an object in a collection 15
retrieving an object in a collection 17

D
DASD (Direct Access Storage Device)

in OAM storage hierarchy 3
in object data storage, using 61

data class
ACS routine, updating 4
description 3

databases
query element list 53
synchronizing activities 4, 11, 61

DB2
call attachment facility (CAF) 10, 29
coordinating with OAM and your application 4
deadlocks 31
load modules, using JOBLIB and STEPLIB

statements in 30
message data area 25
OSR functions 2
timeouts 31

DELETE function
deleting an existing object 6, 14
description 7
parameter keywords

COLLECTN 14, 24
MF 14, 24
MSGAREA 14, 25
NAME 14, 25
REACODE 14, 26
RETCODE 14, 27
TOKEN 14, 27
TTOKEN 14, 28

syntax 14
disability 69
DSECT

CBRIBUFL macro 33
CBRIQEL macro 35

E
exit, installation

abend handling 64
description 63
programming notes 64
register contents on entry 63
sample exit 64
validation routine 63

expiration date processing
automatic deletion of objects 31
management class retention limit 31, 32
object retention period 31
reserved value 31
valid retention periods 32

F
functions

OSREQ macro
ACCESS 10
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 20
UNACCESS 23

I
IADDRESS keyword parameter

application connection to DB2 31
as direct identifier for entry point address 24
as optional parameter 29
description 24
effects in processing environments 11
format 24
in the ACCESS function 9, 28
parameter list 24
using with structured query language (SQL) 11

J
JOBLIB statements 30

assigning concatenation to authorized libraries 30
using with DB2 load modules 30

K
keyboard 69
keyword parameter descriptions 23

L
LENGTH keyword parameter

as optional parameter 24
description 24
format 24
in the RETRIEVE function 18
omitting the 24
specifying a portion of an object for retrieval 18
value of zero 24

M
macro

CBRIBUFL 33
CBRIQEL 35
OSREQ 7

78 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

management class
assigning to objects 21
changing 11, 13
defaults 6, 19
description 3
expiration date processing 31
format 25

messages
DB2 data area 25
OSREQ return and reason codes 32

MF keyword parameter
as optional input parameter 30
description 24
format 8, 24
functions used in

ACCESS 10
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 20
UNACCESS 23

OSREQ macro forms 8
specifying the TOKEN keyword parameter 29
using the COMPLETE operand 28

specifying parameters 28, 30
MGMTCLAS keyword parameter

description 25
format 11, 25
functions used in

CHANGE 12
STORE 20

omitting the 30
MSGAREA keyword parameter

as an optional parameter 8
description 25
format 25
functions used in

ACCESS 9
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 19
UNACCESS 23

N
NAME keyword parameter

description 14, 15, 17, 25
format 25
functions used in

DELETE 12, 14
QUERY 16
RETRIEVE 17
STORE 20

object name length field as input for the 18

O
object 7

access time 6
administration 4
changing an object’s management

characteristics 11
characteristics 2
class transition 6
data reblocking 61
deleting an existing object 14
deleting directory information 7
descriptive information 6
establishing the storage management policy 2
expiration date processing 31
name, qualifying the 9
name field 39
partial retrieve function 6
processing large objects 61
querying the directory 7
retrieval response time 39
retrieving objects 19
separating 6
size restrictions and limitations 30
storage device basis 22
storing directory information 7
temporary storage 61

Object Access Method (OAM)
choosing data types 4
description 2
establishing the storage management policy 2
naming conventions 4
SMS construct definitions 3
understanding the components

Library Control System (LCS) 2
OAM Storage Management Component

(OSMC) 2
Object Storage and Retrieval (OSR) 2

OFFSET keyword parameter
description 26
format 26
in the RETRIEVE function 17, 26
omitting the 26
retrieving an object 18, 19, 24
retrieving part of an object 24

optical
object retrieval 61
volumes

library-resident 1
reading and writing 2

OSREQ macro
CBRIBUFL macro 23, 33
CBRIQEL macro 35
CBROSREQ SAMPLIB job 41
coding guidelines 8
criteria for OSREQ macro use 4
description 1, 7
ending the OSREQ interface 22
functions of the macro 7
how to read syntax diagrams x
initializing the macro 9
optional input parameter 30

Index 79

OSREQ macro (continued)
OSREQ keyword parameter descriptions 23
OSREQ return and reason codes 32
register values at invocation 31
under CICS 28
usage recommendations 28
usage requirements 29
using the OSREQ macro 7

P
parameter

input/output requirements 29
keywords 23

BUFLIST 10, 23
COLLECTN 10, 23, 24
IADDRESS 10, 24
LENGTH 10, 24
MF 10, 24
MGMTCLAS 10, 25
MSGAREA 10, 25
NAME 10, 25
OFFSET 10, 26
QEL 10, 26
REACODE 10, 26
RELBUF 10, 26
RETCODE 10, 27
RETPD 10, 27, 31
SIZE 10, 27
STORCLAS 10, 27
TOKEN 10, 27
TTOKEN 10, 28
VIEW 10, 28

OSREQ conventions 28

Q
QEL (query element list) keyword parameter

as pointer to CBRIQEL macro 35
as query buffer length field (QELBBLTH) 38
as retrieval order key fields 35, 37

backup retrieval order key (QELQBROK) 35, 36,
37

primary retrieval order key (QELQPROK) 35, 36,
37

secondary backup retrieval order key
(QELQB2OK) 35, 36, 37

as retrieval response time field (QELQERRT) 37
buffer space 34, 35, 37, 38
description 15, 26, 35
DSECT description 35
format 26
in the CBRIQEL macro 35, 36, 37
in the QUERY function 15, 16

QUERY function
CBRIQEL macro 35
description 7
generic search 15
getting object characteristics 15
name conventions 25

QUERY function (continued)
parameter keywords

COLLECTN 16, 24
MF 16, 24
MSGAREA 16, 25
NAME 16, 25
QEL 16, 26
REACODE 16, 26
RETCODE 16, 27
TOKEN 16, 27
TTOKEN 16, 28

QEL keyword parameter 35
query buffer

mapping 35
QELBUSED field parameter 38

retrieving an existing object 17
syntax 16

R
REACODE keyword parameter

as an optional parameter 8, 26
description 26
format 26
functions used in

ACCESS 9
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 19
UNACCESS 23

general use 53
reason codes

general use 53
OSREQ macro 32
REACODE keyword parameter

in the ACCESS function 9
in the CHANGE function 12
in the DELETE function 14
in the QUERY function 16
in the RETRIEVE function 17
in the STORE function 19
in the UNACCESS function 23

recovery, object
successful 19
use of the RETRIEVE function in 19

RELBUF keyword parameter
default value 27
description 26, 61
format 26
in the STORE function 20

RETCODE keyword parameter
description 27
format 27
functions used in

ACCESS 9
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17

80 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

RETCODE keyword parameter (continued)
functions used in (continued)

STORE 19
UNACCESS 23

general use 53
retention period

changing for previously stored objects 11
expiration attributes 19, 31
expiration date processing 13, 31
management class assignment 13
null parameter value 14, 30
overriding 27
specifying on a STORE function 19
specifying override retention period 27, 31

RETPD keyword parameter
description 27
format 27
functions used in

CHANGE 12
range for parameter values 13, 31

RETRIEVE function
backup retrieval 18, 19
buffer use 34
date

updating last referenced 19
updating pending action 19

description 7, 17
parameter keywords

BUFLIST 17, 23
COLLECTN 17, 18, 24
LENGTH 17, 24
MF 17, 24
MSGAREA 17, 25
NAME 17, 25
OFFSET 17, 26
REACODE 17, 26
RETCODE 17, 27
TOKEN 17, 27
TTOKEN 17, 28
VIEW 17, 19, 28

QUERY output using the 19
QUERY request as input 17, 18
retrieval response time 39
single object recovery and the 19
syntax 17

S
SAMPLIB job

CBRIBIND 31
CBROSREQ 41

generating the IADDRESS keyword
parameter 41

link-editing 41
modifying for use with high-level languages 41
use with COBOL 41
use with PL/1 41
ways to use 41

CBRUXSAE 63
security authorization checking 63
shortcut keys 69

size
keyword 27
processing large objects, limitations on 61
restrictions and limitations, object 30

SIZE keyword parameter
description 27
format 27
in the STORE function 20
specifying number of bytes 19, 27

STEPLIB statements 30
assigning concatenation to authorized libraries 30
using with DB2 load modules 30

storage class
assigning to objects 21
changing for an object 11
defaults 6, 19
description 3

storage group
affiliating libraries with a 2
assigning backup storage groups using SETOSMC

statements 3
assigning collections to a 2, 6
description 3
OAM storage hierarchy 3

storage management
class, changing 13
constructs 3
establishing the storage management policy 2

STORCLAS keyword parameter
description 27
format 27
functions used in

CHANGE 12
STORE 20

null parameter value 30
omitting the 27

STORE function
catalog entry 30
collection name 19
description 7, 19
expiration date processing 31
parameter keywords

BUFLIST 20, 23
COLLECTN 20, 24
MF 20, 24
MGMTCLAS 20, 25
MSGAREA 20
NAME 20, 25
REACODE 20, 26
RELBUF 20, 26
RETCODE 20, 27
RETPD 20, 27
SIZE 20, 27
STORCLAS 20, 27
TOKEN 20, 27
TTOKEN 20, 28

performance considerations 61
syntax 19

structured query language (SQL)
COMMIT and 11
CONNECT and 11

Index 81

structured query language (SQL) (continued)
interface module entry point address 11
using with the IADDRESS function 11

syntax diagrams
ACCESS 9
CHANGE 12
DELETE 14
how to read x
QUERY 16
RETRIEVE 17
STORE 19
UNACCESS 23

T
TOKEN keyword parameter 9

causes abend, invalid 29
clearing TOKEN contents 11, 27
description 27
format 27
functions used in

ACCESS 10
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 20
UNACCESS 23

passing to subroutines 28
setting the 9

TTOKEN keyword parameter
description 28
format 28
functions used in

ACCESS 10
CHANGE 12
DELETE 14
QUERY 16
RETRIEVE 17
STORE 19
UNACCESS 23

U
UNACCESS function

clearing TOKEN contents 11, 27
description 7
ending the OSREQ interface 22
parameter keywords

MF 24
MSGAREA 25
REACODE 26
RETCODE 27
TTOKEN 27, 28

syntax 23

V
VIEW keyword parameter

default value 28
description 28

VIEW keyword parameter (continued)
format 28
in the RETRIEVE function 17
no second backup object exists when issuing

the 18
reason codes returned from use of 59
valid values 18

82 z/OS V1R3.0 DFSMS OAM Application Programmer’s Reference

Readers’ Comments — We’d Like to Hear from You

z/OS
Object Access Method Application
Programmer’s Reference

Publication No. SC35-0425-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC35-0425-01

SC35-0425-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 61C
9000 South Rita Road
TUCSON AZ 85775-4401

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC35-0425-01

	Contents
	Figures
	About This Book
	Major Divisions of this Book
	Required Product Knowledge
	Referenced Publications
	Accessing z/OS DFSMS Books on the Internet
	Using LookAt to look up message explanations
	Accessing Licensed Books on the Web
	How to Send Your Comments
	How to Read Syntax Diagrams

	Summary of Changes
	Summary of Changes for SC35-0425-01 z/OS Version 1 Release 3
	New Information
	Changed Information
	Moved Information

	Chapter 1. Understanding the Object Access Method
	Understanding OAM Components
	Establishing a Storage Management Policy
	Understanding the OAM Application Programming Interface
	Choosing Data Types That Work Well with OAM
	Retrieving a Partial Object
	Coordinating DB2, OAM, and Your Application
	Coordinating Your Application with OAM’s Object Identification
	Overriding Management Policy Defaults
	Separating Objects
	Deleting Objects

	Chapter 2. Application Program Interface for OAM
	Using the OSREQ Macro
	Here is What You Can Do with OSREQ
	Choosing the Form
	Getting the Code Right

	Implementing the Functions
	ACCESS—Initializing the OSREQ Interface
	CHANGE—Changing an Object's Management Characteristics
	DELETE—Deleting an Existing Object
	QUERY—Obtaining Object Characteristics
	RETRIEVE—Retrieving an Existing Object
	STORE—Adding an Object
	Processing a STORE to a New Collection
	Processing a STORE to an Existing Collection

	UNACCESS—Ending the OSREQ Interface

	OSREQ Keyword Parameter Descriptions
	Usage Considerations
	Usage Requirements
	Restrictions and Limitations
	Programming Notes
	Register Use

	Expiration Date Processing
	Messages and Codes
	CBRIBUFL Macro
	CBRIQEL Macro

	Appendix A. Sample Program for Object Storage
	Appendix B. Reason Codes
	Appendix C. Performance Considerations and Object Data Reblocking
	Performance Considerations
	Object Data Reblocking
	Object Storage
	Object Retrieval

	Appendix D. Using the CBRUXSAE Installation Exit
	Register Contents on Entry to CBRUXSAE
	Programming the CBRUXSAE Exit Correctly
	Sample CBRUXSAE Installation Exit

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

